首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Elucidating the information content of vocal signals is fundamental to the understanding of animal communication. Acoustically distinct calls produced in specific contexts allow listeners to predict future events and choose adequate responses. However, the vocal repertoires of most terrestrial mammals consist of a limited number of call types that vary within and between categories. These "graded signaling systems" are thought to be rich in information, at the cost of increasing uncertainty regarding call categorization. In this study, patterns of acoustic variation in grunts of wild chacma baboons (Papio ursinus) were assessed in relation to different contexts, callers' arousal, the presence of listeners, and individual identity. Although overall production specificity was low, and sensitive to the number of contexts under consideration, grunts given in three contexts could be statistically distinguished from each other. Contextual differences remained when controlling for caller arousal, suggesting that these differences cannot be explained by variation in arousal. No audience effect was detected, but individual identity was found to have an influence on acoustic structure. Overall, these results support the view that, in comparison to other signaling systems associated with hazardous conditions, lower production specificity might evolve under relaxed circumstances where unambiguous signaling is less important.  相似文献   

2.
Key voice features--fundamental frequency (F0) and formant frequencies--can vary extensively between individuals. Much of the variation can be traced to differences in the size of the larynx and vocal-tract cavities, but whether these differences in turn simply reflect differences in speaker body size (i.e., neutral vocal allometry) remains unclear. Quantitative analyses were therefore undertaken to test the relationship between speaker body size and voice F0 and formant frequencies for human vowels. To test the taxonomic generality of the relationships, the same analyses were conducted on the vowel-like grunts of baboons, whose phylogenetic proximity to humans and similar vocal production biology and voice acoustic patterns recommend them for such comparative research. For adults of both species, males were larger than females and had lower mean voice F0 and formant frequencies. However, beyond this, F0 variation did not track body-size variation between the sexes in either species, nor within sexes in humans. In humans, formant variation correlated significantly with speaker height but only in males and not in females. Implications for general vocal allometry are discussed as are implications for speech origins theories, and challenges to them, related to laryngeal position and vocal tract length.  相似文献   

3.
In mammals individual distinctiveness in vocalizations provides the basis for individual recognition and thus plays an important role in social behavior. In this study, first evidence is provided for a nocturnal primate that variation in individual distinctiveness across the vocal repertoire is to some extent determined by the context and the acoustic structure of the call types. Individual distinctiveness was investigated across call types in the gray mouse lemur, a nocturnal primate, living in a dispersed multi-male multi-female social system. To explore to what degree context and acoustic structure predict variations in individual distinctiveness, four major call types were examined (grunts, tsaks, short whistles, and trills). Call types differed in context and acoustic structure and were recorded under controlled experimental conditions. A discriminant function analysis revealed that all call types are individually distinct, but not to the same degree. The findings suggest that variations in individual distinctiveness can to some extent be explained by the context and the acoustic structure of the call types.  相似文献   

4.
Although listeners routinely perceive both the sex and individual identity of talkers from their speech, explanations of these abilities are incomplete. Here, variation in vocal production-related anatomy was assumed to affect vowel acoustics thought to be critical for indexical cueing. Integrating this approach with source-filter theory, patterns of acoustic parameters that should represent sex and identity were identified. Due to sexual dimorphism, the combination of fundamental frequency (F0, reflecting larynx size) and vocal tract length cues (VTL, reflecting body size) was predicted to provide the strongest acoustic correlates of talker sex. Acoustic measures associated with presumed variations in supralaryngeal vocal tract-related anatomy occurring within sex were expected to be prominent in individual talker identity. These predictions were supported by results of analyses of 2500 tokens of the /epsilon/ phoneme, extracted from the naturally produced speech of 125 subjects. Classification by talker sex was virtually perfect when F0 and VTL were used together, whereas talker classification depended primarily on the various acoustic parameters associated with vocal-tract filtering.  相似文献   

5.
Otariid seals (fur seals and sea lions) are colonial breeders with large numbers of females giving birth on land during a synchronous breeding period. Once pups are born, females alternate between feeding their young ashore and foraging at sea. Upon return, both mother and pup must relocate each other and it is thought to be primarily facilitated by vocal recognition. Vocalizations of thirteen female Australian fur seals (Arctocephalus pusillus doriferus) were recorded during the breeding seasons of December 2000 and 2001, when pups are aged from newborns to one month. The pup attraction call was examined to determine whether females produce individually distinct calls which could be used by pups as a basis for vocal recognition. Potential for individual coding, discriminant function analysis (DFA), and classification and regression tree analysis were used to determine which call features were important in separating individuals. Using the results from all three analyses: F0, MIN F and DUR were considered important in separating individuals. In 76% of cases, the PAC was classified to the correct caller, using DFA, suggesting that there is sufficient stereotypy within individual calls, and sufficient variation between them, to enable vocal recognition by pups of this species.  相似文献   

6.
Bouts of vocalizations given by seven red deer stags were recorded over the rutting period, and homomorphic analysis and hidden Markov models (two techniques typically used for the automatic recognition of human speech utterances) were used to investigate whether the spectral envelope of the calls was individually distinctive. Bouts of common roars (the most common call type) were highly individually distinctive, with an average recognition percentage of 93.5%. A "temporal" split-sample approach indicated that although in most individuals these identity cues held over the rutting period, the ability of the models trained with the bouts of roars recorded early in the rut to correctly classify later vocalizations decreased as the recording date increased. When Markov models trained using the bouts of common roars were used to classify other call types according to their individual membership, the classification results indicated that the cues to identity contained in the common roars were also present in the other call types. This is the first demonstration in mammals other than primates that individuals have vocal cues to identity that are common to the different call types that compose their vocal repertoire.  相似文献   

7.
This study quantifies sex differences in the acoustic structure of vowel-like grunt vocalizations in baboons (Papio spp.) and tests the basic perceptual discriminability of these differences to baboon listeners. Acoustic analyses were performed on 1028 grunts recorded from 27 adult baboons (11 males and 16 females) in southern Africa, focusing specifically on the fundamental frequency (F0) and formant frequencies. The mean F0 and the mean frequencies of the first three formants were all significantly lower in males than they were in females, more dramatically so for F0. Experiments using standard psychophysical procedures subsequently tested the discriminability of adult male and adult female grunts. After learning to discriminate the grunt of one male from that of one female, five baboon subjects subsequently generalized this discrimination both to new call tokens from the same individuals and to grunts from novel males and females. These results are discussed in the context of both the possible vocal anatomical basis for sex differences in call structure and the potential perceptual mechanisms involved in their processing by listeners, particularly as these relate to analogous issues in human speech production and perception.  相似文献   

8.
Measurements are reported of the intensity of the siamang gibbon loud call obtained from the vocal bouts of three family groups at Twycross Zoo, UK. Across 25 samples the maximum intensity ranged from 95 to 113 dB SPL (linear frequency-weighting and fast time-weighting) and exhibited three frequency modes of 250-315 Hz, 630-800 Hz and 1.2-1.6 kHz. The lowest frequency mode, which may correspond to the "boom" sound produced by resonance of the siamang inflated vocal sac, had a mean maximum intensity of 99 dB SPL. These values, which are in excess of the saccular acoustic threshold of about 90 dB at 300 Hz for air conducted sound, suggest that primate loud calls recruit a primitive mode of acoustic sensitivity furnished by the sacculus. Thus reproductive vocal behavior of primates may be influenced by a primitive acoustical reward pathway inherited from a common ancestor with anamniotes. In humans such a pathway could explain the compulsion for exposure to loud music.  相似文献   

9.
Loud, pulsed "gecker" vocalizations are commonly produced by young rhesus macaques in distressful circumstances. The acoustics, usage, and responses associated with these calls were examined using audio recordings and observational data from captive, socially living rhesus up to 24 months old. One-hundred-eleven gecker bouts were recorded from ten individuals (six males, four females), with most geckers produced during the first 6 months of age. A gecker call consisted of a bout of up to 28 pulses of spectrally structured noise with a single prominent frequency peak. Nine contexts of calling were identified, but little evidence of context-specific acoustic variation was found. While geckering often triggered responses by the vocalizer's mother, the most common outcome was the absence of any reaction. Females geckered longer and at higher rates than did males, while also showing acoustic evidence of greater vocal effort. Mothers nonetheless responded more often and more positively to males. Overall, results show that gecker acoustics vary somewhat with vocalizer sex, age, and likely arousal level, but do not reflect detailed aspects of behavioral context. Circumstances of production suggest that geckers function primarily to draw the attention of mothers, who in turn are selective in responding.  相似文献   

10.
11.
Although the mammalian larynx exhibits little structural variation compared to sound-producing organs in other taxa (birds or insects), there are some morphological features which could lead to significant differences in acoustic functioning, such as air sacs and vocal membranes. The vocal membrane (or "vocal lip") is a thin upward extension of the vocal fold that is present in many bat and primate species. The vocal membrane was modeled as an additional geometrical element in a two-mass model of the larynx. It was found that vocal membranes of an optimal angle and length can substantially lower the subglottal pressure at which phonation is supported, thus increasing vocal efficiency, and that this effect is most pronounced at high frequencies. The implications of this finding are discussed for animals such as bats and primates which are able to produce loud, high-pitched calls. Modeling efforts such as this provide guidance for future empirical investigations of vocal membrane structure and function, can provide insight into the mechanisms of animal communication, and could potentially lead to better understanding of human clinical disorders such as sulcus vocalis.  相似文献   

12.
The ability to recognize individuals based on their vocalizations is common among many species of songbirds. Examining the psychological and neural basis of this functionally relevant behavior can provide insight into the perceptual processing of acoustically complex, real-world, communication signals. In one species of songbird, European starlings (Sturnus vulgaris), males sing long and acoustically complex songs composed of small stereotyped note clusters called motifs. Previous studies demonstrate that starlings are capable of individual vocal recognition, and suggest that vocal recognition results from the association of specific motifs with specific individuals. The present study tests this possibility by examining how variation among the motifs that comprise a song affect its discrimination and classification. Starlings were trained, using operant techniques, to associate multiple songs from a single male starling with one response, and songs from four other male starlings with another response. The level of stimulus control exerted by motif variation was then measured by having subjects classify three sets of novel song bouts in which motifs from the training songs were systematically recombined. The results demonstrate a significant, and approximately linear, relationship between song classification and the relative proportions of familiar motifs from different singers that compose a bout. The results also indicate that the motif proportion effects on song classification are primary to retroactive interference in the recall for specific motifs, and independent of any biases due to the syntactic organization of motifs within a bout. Together, the results of this study suggest that starlings organize the complex vocalizations of conspecifics by memorizing large numbers of unique song components (i.e., motifs) that are then associated with different classes. Because individual starlings tend to possess unique motif repertoires, it is likely that under natural conditions such classes will correspond to individual identity. Thus, it is likely that perceptual processing mechanisms similar to those described by the results of the present study form the basis for individual vocal recognition in starlings.  相似文献   

13.
Budgerigars were trained to produce specific vocalizations (calls) using operant conditioning and food reinforcement. The bird's call was compared to a digital representation of the call stored in a computer to determine a match. Once birds were responding at a high level of precision, we measured the effect of several manipulations upon the accuracy and the intensity of call production. Also, by differentially reinforcing other aspects of vocal behavior, budgerigars were trained to produce a call that matched another bird's contact call and to alter the latency of their vocal response. Both the accuracy of vocal matching and the intensity level of vocal production increased significantly when the bird could hear the template immediately before each trial. Moreover, manipulating the delay between the presentation of an acoustic reference and the onset of vocal production did not significantly affect either vocal intensity or matching accuracy. Interestingly, the vocalizations learned and reinforced in these operant experiments were only occasionally used in more natural communicative situations, such as when birds called back and forth to one another in their home cages.  相似文献   

14.
Acoustic and glottographic measures may provide important information that could enhance clinical management and documentation of vocal dysfunction. Acoustic measures such as jitter and shimmer reflect “short-term” perturbations, or instabilities of the voice, and the coefficients of variation for frequency and for amplitude reflect “long-term” perturbations. Interpretations of these acoustic measures are based on the assumption that vocal perturbations may be related to laryngeal tissue abnormalities, asymmetries in vocal fold movement, or neuromuscular fluctuations in the respiratory, laryngeal, or vocal tract systems. The abduction quotient is a glottographic measure related to laryngeal adduction and is obtained from an analysis of the electroglottograph signal. The adduction measure appears to be independent of the acoustic perturbation measures. Interpretations of the acoustic and adductory measures may, therefore, complement each other for greater understanding of a patient's laryngeal behavior. Visual displays of the acoustic and glottographic signals also are discussed to demonstrate their value in voice signal interpretations. Case studies illustrate potential interpretations of the acoustic perturbation and abduction quotient measures.  相似文献   

15.
Vocal recognition is common among songbirds, and provides an excellent model system to study the perceptual and neurobiological mechanisms for processing natural vocal communication signals. Male European starlings, a species of songbird, learn to recognize the songs of multiple conspecific males by attending to stereotyped acoustic patterns, and these learned patterns elicit selective neuronal responses in auditory forebrain neurons. The present study investigates the perceptual grouping of spectrotemporal acoustic patterns in starling song at multiple temporal scales. The results show that permutations in sequencing of submotif acoustic features have significant effects on song recognition, and that these effects are specific to songs that comprise learned motifs. The observations suggest that (1) motifs form auditory objects embedded in a hierarchy of acoustic patterns, (2) that object-based song perception emerges without explicit reinforcement, and (3) that multiple temporal scales within the acoustic pattern hierarchy convey information about the individual identity of the singer. The authors discuss the results in the context of auditory object formation and talker recognition.  相似文献   

16.
The segregation of concurrent vocal signals is an auditory processing task faced by all vocal species. To segregate concurrent signals, the auditory system must encode the spectral and temporal features of the fused waveforms such that at least one signal can be individually detected. In the plainfin midshipman fish (Porichthys notatus), the overlapping mate calls of neighboring males produce acoustic beats with amplitude and phase modulations at the difference frequencies (dF) between spectral components. Prior studies in midshipman have shown that midbrain neurons provide a combinatorial code of the temporal and spectral characteristics of beats via synchronization of spike bursts to dF and changes in spike rate and interspike intervals with changes in spectral composition. In the present study we examine the effects of changes in signal parameters of beats (overall intensity level and depth of modulation) on the spike train outputs of midbrain neurons. The observed changes in spike train parameters further support the hypothesis that midbrain neurons provide a combinatorial code of the spectral and temporal features of concurrent vocal signals.  相似文献   

17.
During the breeding season, the underwater vocalizations and calling rates of adult male leopard seals are highly stereotyped. In contrast, sub-adult males have more variable acoustic behavior. Although adult males produce only five stereotyped broadcast calls as part of their long-range underwater breeding displays the sub-adults have a greater repertoire including the adult-like broadcast calls, as well as variants of these. Whether this extended repertoire has a social function is unknown due to the paucity of behavioral data for this species. The broadcast calls of the sub-adults are less stereotyped in their acoustic characteristics and they have a more variable calling rate. These age-related differences have major implications for geographic variation studies, where the acoustic behavior of different populations are compared, as well as for acoustic surveying studies, where numbers of calls are used to indicate numbers of individuals present. Sampling regimes which unknowingly include recordings from sub-adult animals will artificially exaggerate differences between populations and numbers of calling animals. The acoustic behavior of sub-adult and adult male leopard seals were significantly different and although this study does not show evidence that these differences reflect vocal learning in the male leopard seal it does suggest that contextual learning may be present.  相似文献   

18.
We present a comprehensive, functional analysis of clinical voice data derived from both high-speed digital imaging (HSDI) of the larynx and simultaneously acquired acoustic recordings. The goals of this study are to: (1) correlate dynamic characteristics of the vocal folds derived from direct laryngeal imaging with indirectly acquired acoustic measurements; (2) define the advantages of using a combined imaging/acoustic approach for the analysis of voice condition; and (3) identify new quantitative measures to evaluate the regularity of the vocal fold vibration and the complexity of the vocal output -- these measures will be key to successful diagnosis of vocal abnormalities. Image- and acoustic-based analyses are performed using an analytic phase plot approach previously introduced by our group (referred to as 'Nyquist' plot). Fast Fourier Transform (FFT) spectral analyses are performed on the same data for a comparison. Clinical HSDI and acoustic recordings from subjects having normal and specific voice pathologies, including muscular tension dysphonia (MTD) and recurrent respiratory papillomatosis (RRP) were analyzed using the Nyquist plot approach. The results of these analyses show that a combined imaging/acoustic analysis approach provides better characterization of the vibratory behavior of the vocal folds as it correlates with vocal output and pathology.  相似文献   

19.
在澄清嗓音源概念的基础上提出了一种以嗓音源变换函数为基础的声门发声效率估计方法。将嗓音源变换函数定义为声门上声学嗓音源与声门气流体积速度波在频域上的比值。通过精心设计的活体犬喉及人体发声实验分别在不同元音、压紧嗓音、气声、假声和典型喉病变条件下。采用稳态元音发声方式对这一新的声门发声效率估计方法实验研究;并与其他发声效率方法综合比较。结果表明,该方法能消除上声道传输与共鸣作用的影响,能反映不同发声方式的差异;频域平均声门发声效率反映了物理定义上的声门发声效率的变化,而声门基频发声效率的变化与AC/DC比值变化一致。  相似文献   

20.
Professional vocalists encounter demands requiring voluntary control of phonation, while utilizing a considerable range of frequency and intensity. These quantifiable acoustic events can be measured and represented in a phonetogram. Previous research has compared the phonetograms of trained and untrained voices and found significant differences between these groups. This study was designed to assess the effects of vocal training for singers over a period of nine months. Phonetogram contour changes were examined, with the primary focus on expansion of frequency range and/or intensity control. Twenty-one first-year, master's level, vocal music students, who were engaged in an intensive vocal performance curriculum, participated in this study. Following nine months of vocal training, significant differences were revealed in the subjects' mean frequency range and minimum vocal intensity across frequency levels. There was no significant difference for the mean maximum vocal intensity across frequency levels following vocal training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号