首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Lanthanum aluminate (LAO) thin films were deposited on silicon by pulsed-laser deposition. It was found that oxygen partial pressure played an essential role in the formation of an interfacial layer. The films deposited in nitrogen at a pressure of 20 Pa had no interfacial layer. However, an interfacial layer was observed in the films deposited in 1×10-2 Pa atmosphere. According to the thickness of the LAO film and interfacial layer and the measured capacitance, it could be deduced that the interfacial layer was not pure SiO2. Auger electron spectroscopy, secondary ion mass spectroscopy and X-ray photoelectron spectroscopy depth analyses indicated that the interfacial layer was La–Al–silicate rather than pure silicon oxide and that the La and Al concentrations in the interfacial layer had gradients from the LAO layer to the substrate. PACS 79.61.Jv; 77.55.+f; 81.15.Gh  相似文献   

2.
ZrO2 thin films have been prepared on Pt-coated silicon substrates and directly on n-Si(100) substrates by the pulsed laser deposition (PLD) technique using a ZrO2 ceramic target under different deposition conditions. X-ray diffraction showed that the films prepared at 400 °C in 20 Pa oxygen ambient remained amorphous. Differential thermal analysis was carried out to study the crystallization behavior of ZrO2. The dielectric constant of ZrO2 was determined to be around 24 by measuring a Pt/ZrO2/Pt capacitor structure. Sputtering depth profile X-ray photoelectron spectroscopy was used to investigate the interfacial characteristics of ZrO2/n-Si stacks. A Zr silicate interfacial layer was formed between the ZrO2 layer and the silicon substrate. The equivalent oxide thickness (EOT) and leakage current densities of the films with 6.6 nm physical thickness post-annealed in O2 and N2 ambient were investigated. An EOT of 1.65 nm with a leakage current of 36.2 mA/cm2 at 1 V gate voltage for the film post-annealed in N2 has been obtained. ZrO2 thin films prepared by PLD have acceptable structure and dielectric properties required by a candidate material of high-k gate dielectrics. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

3.
As potential gate dielectric materials, pseudobinary oxide (TiO2)x(Al2O3)1-x (0.1≤x≤0.6) films (TAO) were deposited on Si (100) substrates by pulsed-laser deposition method and studied systematically via various measurements. By a special deposition process, including two separate steps, the TAO films were deposited in the form of two layers. The first layer was deposited at room temperature and the second layer was completed at the substrate temperature of 400 °C. Detailed data show that the properties of the TAO films are closely related to the ratio between TiO2 and Al2O3. The existence of the first layer deposited at room temperature can effectively restrain the formation of the interfacial layer. And according to the results of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy performed on the films, no other information belonging to the silicon oxide could be observed. For the (TiO2)0.4(Al2O3)0.6 film, the best result has been achieved among all samples and its dielectric constant is evaluated to be about 38. It is valuable for the amorphous TAO film as one of the promising dielectric materials for high-k gate dielectric applications. PACS 77.55.+f; 73.40.Qv; 81.15.Fg  相似文献   

4.
Epitaxial Gd2O3 thin films were successfully grown on Si (001) substrates using a two-step approach by laser molecular-beam epitaxy. At the first step, a ~0.8 nm thin layer was deposited at the temperature of 200 °C as the buffer layer. Then the substrate temperature was increased to 650 °C and in situ annealing for 5 min, and a second Gd2O3 layer with a desired thickness was deposited. The whole growth process is monitored by in situ reflection high-energy electron diffraction (RHEED). In situ RHEED analysis of the growing film has revealed that the first Gd2O3 layer deposition and in situ annealing are the critical processes for the epitaxial growth of Gd2O3 film. The Gd2O3 film has a monoclinic phase characterized by X-ray diffraction. The high-resolution transmission electron microscopy image showed all the Gd2O3 layers have a little bending because of the stress. In addition, a 5–6 nm amorphous interfacial layer between the Gd2O3 film and Si substrate is due to the in situ high temperature annealing for a long time. The successful Gd2O3/Si epitaxial growth predicted a possibility to develop the new functional microelectronics devices.  相似文献   

5.
L. Shi 《Applied Surface Science》2007,253(7):3731-3735
As a potential gate dielectric material, the La2O3 doped SiO2 (LSO, the mole ratio is about 1:5) films were fabricated on n-Si (0 0 1) substrates by using pulsed laser deposition technique. By virtue of several measurements, the microstructure and electrical properties of the LSO films were characterized. The LSO films keep the amorphous state up to a high annealing temperature of 800 °C. From HRTEM and XPS results, these La atoms of the LSO films do not react with silicon substrate to form any La-compound at interfacial layer. However, these O atoms of the LSO films diffuse from the film toward the silicon substrate so as to form a SiO2 interfacial layer. The thickness of SiO2 layer is only about two atomic layers. A possible explanation for interfacial reaction has been proposed. The scanning electron microscope image shows the surface of the amorphous LSO film very flat. The LSO film shows a dielectric constant of 12.8 at 1 MHz. For the LSO film with thickness of 3 nm, a small equivalent oxide thickness of 1.2 nm is obtained. The leakage current density of the LSO film is 1.54 × 10−4 A/cm2 at a gate bias voltage of 1 V.  相似文献   

6.
The thermal stability and the electrical properties of HfO2 and Hf–aluminate films prepared by the pulsed laser deposition technique have been investigated by X-ray diffraction, differential thermal analysis, capacitance–voltage correlation, leakage-current measurements and high-resolution transmission electron microscopy observation, respectively. A crystallization transformation from HfO2 amorphous phase to polycrystalline monoclinic structure occurs at about 500 °C. In contrast, the amorphous structure of Hf–aluminate films remains stable at higher temperatures up to 900 °C. Rapid thermal annealing at 1000 °C for 3 min leads to a phase separation in Hf–aluminate films. Tetragonal HfO2(111) is predominant, and Al2O3 separates from Hf–aluminate and is still in the amorphous state. The dielectric constant of amorphous HfO2 and Hf–aluminate films was determined to be about 26 and 16.6, respectively, by measuring a Pt/dielectric film/Pt capacitor structure. A very small equivalent oxide thickness (EOT) value of 0.74 nm for a 3-nm physical thickness Hf–aluminate film on a n-Si substrate with a leakage current of 0.17 A/cm2 at 1-V gate voltage was obtained. The interface at Hf–aluminate/Si is atomically sharp, while a thick interface layer exists between the HfO2 film and the Si substrate, which makes it difficult to obtain an EOT of less than 1 nm. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

7.
SrTiO3 films with different cation concentration were deposited on Si(001)substrates by oxide molecular beam epitaxy.An amorphous layer was observed at the interface whose thickness depends on the oxygen pressure and the substrate temperature during growth.Although lowering the oxygen vacancy concentration in SrTiO3led to better insulating performance as indicated by the lowered leakage current density of the heterostructure,the dielectric performance was deteriorated because of the thickened interfacial layer that dominated the capacitance of SrTiO3/Si heterostructure.Instead of adjusting the oxygen vacancy concentration,we propose that controlling the film cation concentration is an effective way to tune the dielectric and insulating properties of SrTiO3/Si at the same time.  相似文献   

8.
An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient–oxide–interlayer–substrate) was presented. Ta2O5 thin films with thickness range of 1–400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.  相似文献   

9.
Monte Carlo模拟计算应用于微区薄膜厚度测定   总被引:2,自引:0,他引:2       下载免费PDF全文
本文用Monte Carlo模拟计算了孤立薄膜和同一材料厚样中同样厚度表层的X射线强度分布函数,然后提出一简单关系式确定有衬底薄膜的X射线出射强度,以校正膜厚测定中Z.A.P.影响,使膜厚测定的准确度比前人有所提高。对GaAS,Si衬底上的Ta2O5膜、ZrO2膜的测厚结果与椭圆术测定结果一致。 关键词:  相似文献   

10.
Metal-insulator-metal (MIM) capacitors were fabricated using ZrO2 films and the effects of structural and native defects of the ZrO2 films on the electrical and dielectric properties were investigated. For preparing ZrO2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O2 atmosphere with/without UV light irradiation (λ = 193 nm, Deep UV lamp). The ZrO2(∼12 nm) films on Pt(∼100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage (C-V) and current-voltage (I-V) measurements were carried out on MIM structures. ZrO2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.  相似文献   

11.
The interfacial reactions and electrical characteristics of stack structures of La2O3 and Al2O3 were investigated as a function of the annealing temperature. In the case of Al2O3/La2O3/Si (ALO structure), the La2O3 in contact with the Si substrate was readily transformed into La-silicate by the diffusion of Si atoms, while in the case of La2O3/Al2O3/Si (LAO structure), interfacial reactions between the Al2O3 layer and the Si substrate were suppressed. After an annealing treatment at 700 °C, the Al2O3 in the ALO structure can play an effective role in blocking the hydration of La2O3, resulting in an unchanged interfacial layer. However, the Al2O3 layer in the LAO structure was unable to suppress the diffusion of Si atoms into the La2O3 film. When the annealing temperature reached 900 °C, both structures showed a similar depth distribution with a high content of Si atoms diffused into the films. The change in the elemental distributions via the diffusion and reaction of Si atoms affected the electrical characteristics at the interface between ALO/LAO structure and Si substrate, specifically the trap charge density (Dit) and band gap (Eg) values.  相似文献   

12.
Tin dioxide (SnO2) thin films were deposited by plasma enhanced-atomic layer deposition (PE-ALD) on Si(1 0 0) substrate using dibutyl tin diacetate (DBTA) ((CH3CO2)2Sn[(CH2)3-CH3]2) as precursor. The process parameters were optimized as a function of substrate temperature, source temperature and purging time. It is observed that the surface phenomenon of the thin films was changed with film thickness. Atomic force microscopy (AFM) images and X-ray diffraction (XRD) pattern were used to observe the texture and crystallanity of the films. The films deposited for 100, 200 and 400 cycles were characterized by XPS to determine the chemical bonding properties. XPS results reveal that the surface dominant oxygen species for 100, 200 and 400 cycles deposited films are O2, O and O2−, respectively. The 200 cycles film has exhibited highest concentration of oxygen (O) species before and after annealing. Conductivity studies revel that this film has best adsorption strength to the oxygen ions forming on the surface. The sensor with 200 cycles SnO2 thin film has shown highest sensitivity to CO gas than other films. A correlation between the characteristics of Sn3d5/2 and O1s XPS spectra before and after annealing and the electrical behavior of the SnO2 thin films is established.  相似文献   

13.
We have investigated the deposition of 91% ZrO2 − 9% Y2O3 thin films by a variety of sputtering techniques for the application as electrolytes in thin film solid oxide fuel cells. The deposition by RF sputtering was accomplished by using an oxide target of the desired composition. The deposition rate in these initial tests was limited to 0.5 μm/hr and the morphology of the film was substantially modified by deposition rate and substrate temperature. Using DC magnetron sputtering we deposited metallic films from a metallic target with the desired chemical composition. We introduced oxygen into the sputtering chamber to reactively deposit the desired 91% ZrO2 − 9% Y2O3 thin films; however, we encountered problems with target oxidation and growth rate reproducibility. We subsequently demonstrated that controlled oxidation of the metallic films could result in adhering, non porous yttria stabilized zirconia films. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

14.
ZrAlON films were fabricated using the reactive ablation of a ceramic ZrAlO target in N2 ambient by pulsed laser deposition (PLD) technique. ZrAlON films were deposited directly on n-Si(100) substrates and Pt coated silicon substrates, respectively, at 500 °C in a 20 Pa N2 ambient, and rapid thermal annealed (RTA) in N2 ambient at 1000 °C for 1 min. Cross sectional high-resolution transmission electron microscopy (HRTEM) images clearly show that the ZrAlON/Si interface is atomically sharp without an interfacial layer, and the films are completely amorphous. The electron diffraction pattern of TEM also indicates the amorphous structure of the RTA ZrAlON film. X-ray photoelectron spectroscopy (XPS) measurement was performed to confirm the effective incorporation of nitrogen with a content of about 6 at. %, and to reveal the N–O bonding in ZrAlON films. The dielectric constant of amorphous ZrAlON was determined to be about 18.2 which is more than 16.8 for ZrAlO by measuring the Pt/films/Pt capacitors. Capacitance–voltage (C–V) measurements show that a small equivalent oxide thickness (EOT) of 1.03 nm for 4 nm ZrAlON film on the n-Si substrate with a leakage current of 28.7 mA/cm2 at 1 V gate voltage was obtained. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

15.
减薄CdS窗口层是提高CdS/CdTe太阳电池转换效率的有效途径之一,减薄窗口层会对器件造成不利的影响,因此在减薄了的窗口层与前电极之间引入过渡层非常必要.利用反应磁控溅射法在前电极SnO2:F薄膜衬底上制备未掺杂的SnO2薄膜形成过渡层,并将其在N2/O2=4 ∶1,550 ℃环境进行了30 min热处理,利用原子力显微镜、X射线衍射仪、紫外分光光度计对复合薄膜热处理前后的形貌、结构、光学性能进行了表征,同时分析了复  相似文献   

16.
Titanium oxide (TiO2) and zirconium oxide (ZrO2) thin films have been deposited on modified Si(1 0 0) substrates selectively by metal-organic chemical vapor deposition (MOCVD) method using new single molecular precursor of [M(OiPr)2(tbaoac)2] (M=Ti, Zr; tbaoac=tertiarybutyl-acetoacetate). For changing the characteristic of the Si(1 0 0) surface, micro-contact printing (μCP) method was adapted to make self-assembled monolayers (SAMs) using an octadecyltrichlorosilane (OTS) organic molecule which has -CH3 terminal group. The single molecular precursors were prepared using metal (Ti, Zr) isopropoxide and tert-butylacetoacetate (tbaoacH) by modifying standard synthetic procedures. Selective depositions of TiO2 and ZrO2 were achieved in a home-built horizontal MOCVD reactor in the temperature range of 300-500 °C and deposition pressure of 1×10−3-3×10−2 Torr. N2 gas (5 sccm) was used as a carrier gas during film depositions. TiO2 and ZrO2 thin films were able to deposit on the hydrophilic area selectively. The difference in surface characteristics (hydrophobic/hydrophilic) between the OTS SAMs area and the SiO2 or Si-OH layer on the Si(1 0 0) substrate led to the site-selectivity of oxide thin film growth.  相似文献   

17.
《Current Applied Physics》2009,9(5):1009-1013
We present here a comparative study on structural and magnetic properties of bulk and thin films of Mg0.95Mn0.05Fe2O4 ferrite deposited on two different substrates using X-ray diffraction (XRD) and dc magnetization measurements. XRD pattern indicates that the bulk sample and their thin films exhibit a polycrystalline single phase cubic spinel structure. It is found that the film deposited on indium tin oxide coated glass (ITO) substrate has smaller grain size than the film deposited on platinum coated silicon (Pt–Si) substrate. Study of magnetization hysteresis loop measurements infer that the bulk sample of Mg0.95Mn0.05Fe2O4 and its thin film deposited on Pt–Si substrate shows a well-defined hysteresis loop at room temperature, which reflects its ferrimagnetic behavior. However, the film deposited on ITO does not show any hysteresis, which reflects its superparamagnetic behavior at room temperature.  相似文献   

18.
This paper investigates the interfacial characteristics of LaAlO3 (LAO) and LaAlOxNy (LAON) films deposited directly on silicon substrates by the pulsed-laser deposition technique. High-resolution transmission electron microscopy (HRTEM) pictures indicate that an interfacial reaction between LAO and Si often exists. The interfacial layer thickness of LAO films deposited in a nitrogen ambient atmosphere is smaller than that of LAO films deposited in an oxygen ambient atmosphere. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were used to study the composition of the interfacial layer. The shift of the La 3d photoelectron peak to a higher binding energy compared to LaAlO3, the shift of the Al 2p peak to a higher binding energy compared to LaAlO3, the shift of the Si 2p peak to a lower binding energy compared to SiO2 and the intermediate location of the O 1s peak compared to LaAlO3 and SiO2 indicate the existence of a La–Al–Si–O bonding structure, which was also proved by the AES depth profile of LAO films. It can be concluded that the interfacial layer is not simply SiO2 but a compound of La–Al–Si–O. PACS 77.84.Bw; 77.84.-s; 77.55.+f  相似文献   

19.
Different aspects of the interaction between YBa2Cu2Oy(YBCO) films and (100) ZrO2〈Y〉 (YSZ) substrates have been investigated. It was determined using X-ray diffraction methods that the structural mismatch between the film and the substrate leads to a film deformation throughout its thickness. At the same time a strained layer appears in the substrate, whose thickness is proportional to the film thickness. The surface morphology changes of YBCO films which take place with variation of the growth temperaturetsin the vicinity of the optimum temperature lead to changes of the film grain structure probably connected with nucleation centers. Tl2Ba2CaCu2Oy(TBCCO) films on YSZ substrates were also synthesized. It was found that the dependence of the TBCCO film surface morphology changes with annealing temperature and the dependence of YBCO film surface morphology changes ontsare similar.  相似文献   

20.
Among the methods for depositing thin films, atomic layer deposition is unique for its capability of growing conformal thin films of compounds with a control of composition and thickness at the atomic level. The conformal growth of thin films can be of particular interest for covering nanostructures since it assures the homogeneous growth of the ALD film in all directions, independent of the position of the sample with respect to the incoming precursor flow. Here we describe the technique for growing the HfO2/Al2O3 bilayer on Si substrate and our in situ approach for its investigation by means of synchrotron radiation photoemission. In particular, we study the interface interactions between the two oxides for various thickness compositions ranging from 0.4 to 2.7 nm. We find that the ALD of HfO2 on Si induces the increase of the interfacial SiO2 layer, and a change in the band bending of Si. On the contrary, the ALD of Al2O3 on HfO2 shows negligible interaction between layers as the binding energies of Hf4f, Si2p, and O1s core level peaks and the valence band maximum of HfO2 do not change and the interfacial SiO2 does not increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号