共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of sulfonated block poly(ether ether ketone)s with different sulfonic acid group clusters were successfully synthesized by nucleophilic displacement condensation. Membranes were accordingly cast from their DMSO solutions, and fully characterized by determining the ion-exchange capacity, water uptake, proton conductivity, dimensional stabilities and mechanical properties. The experimental results showed that the main properties of the membrane can be tailored by changing the cluster size of sulfonic acid groups. The membrane of block-7c(40) has good mechanical, oxidative and dimensional stabilities together with high proton conductivity (5.09 × 10−2 S cm−1) at 80 °C under 100% relative humidity. The membranes also possess excellent thermal and dimensional stabilities. These polymers are potential and promising proton conducting membrane material for PEM full cell applications. 相似文献
2.
Ultrathin films of ferroelectric copolymer vinylidenefluoride and trifluoroethylene, P(VDF-TrFE), were successfully obtained by spin-coating and their nanoscale structures and electrical properties were studied utilizing atomic force microscopy (AFM). We succeeded in obtaining ultrathin copolymer films on graphite whose thickness ranged from 1 nm to several tens of nanometers by controlling concentration of copolymer solutions in methylethylketone. We found that ultrathin films thinner than 4 nm showed layered structures whose layer thickness was about 0.5 nm. On the other hand, films thicker than 4 nm formed typical edge-on lamellar crystal structures. Furthermore, we investigated surface potential distribution and piezoelectric property by AFM-based techniques and discussed interaction between electrical dipoles in the molecular chains and graphite substrate. 相似文献
3.
Jérôme Gromada André Mortreux Frédéric Leising 《Journal of organometallic chemistry》2003,683(1):44-55
The application of well-defined neodymium alkoxides/aryloxides in combination with dialkylmagnesium reagents for 1,3-butadiene (BD) polymerization and copolymerization with styrene (St) and glycidyl methacrylate (GMA) has been investigated. The trinuclear complex Nd3(Ot-Bu)9(THF)2 (1) provided a low-activity system for BD polymerization, even at high temperature, but with a high trans-1,4 stereospecificity (trans-1,4≈95%). Aryloxide complexes Nd(O-2,6-t-Bu2-4-Me-Ph)3(THF) (2) and Nd(O-2,6-t-Bu2-4-Me-Ph)3 (3) were found to give more active systems. The polymerization displayed a controlled character, i.e. a precise control of the molecular weight and a low polydispersity (Mw/Mn<1.30) for high catalyst concentration, keeping the same level of stereocontrol over the polymerization course. The statistical copolymerization of BD and styrene with those systems was successful. High-molecular weight copolymers (Mn up to 50?000 g mol−1) with noticeable styrene content (3-15 mol%) were synthesized. Determination of the microstructure by 13C-NMR showed exclusively trans-1,4-BD-St sequences. The livingness of BD polymerization encouraged attempts of diblock copolymerization with GMA. In this case, low-molecular weight polymers with variable polydispersities were obtained (Mn<20?000 g mol−1; Mw/Mn=1.4-5.0). The composition of the copolymers was analyzed by 1H- and 13C-NMR and IR spectroscopies. SEC analyses confirmed the true nature of the diblock copolymer. The influence of the alkylating agent on those (co)-polymerizations was briefly studied. Finally, the mechanism of polymerization is also discussed. 相似文献
4.
Amparo Navarro Carmen del Río José Luis Acosta 《Journal of Polymer Science.Polymer Physics》2008,46(16):1684-1695
In this research a series of pore‐filling electrolyte membranes were prepared, based on a sulfonated and hydrogenated styrene/butadiene block copolymer (SHSBS) and plasma‐treated microporous polyethylene (PE) membranes. The pore‐filling electrolyte membranes were characterized by means of scanning electronic microscopy (SEM), infrared spectroscopy (FTIR‐ATR), and dynamic mechanical analysis (DMA). In addition, the water uptake and methanol/water uptake capacities of these membranes were determined using several methanol in water solutions, as well as the permeability coefficients, for both water and methanol, using a 2 M methanol in water solution and pure methanol. Finally, electrical behavior was recorded by means of electrochemical impedance spectroscopy (EIS) and the four probe technique (FPT). The SEM images recorded show good coating of the pore‐filling electrolyte membranes on the plasma‐treated PE matrices, and DMA shows the proper relaxations of the two components: PE and SHSBS. Furthermore, the methanol/water absorption capacity was observed to diminish with plasma treatment of the matrix. Methanol permeability of the pore‐filling electrolyte membranes is notably lower than that of the Nafion® membrane, ion conductivity moving in the order of 10−2 S cm−1. Both of these characteristics qualify the experimental membranes as candidates to be applied as proton exchangers in fuel cells (FCs). © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1684–1695, 2008 相似文献
5.
The correlation between the morphology and the deformation mechanism in styrene/butadiene block copolymers having modified architecture and in blends with homopolymer polystyrene (hPS) was studied. It was demonstrated that the morphology formation in the block copolymers is highly coupled with their molecular architecture. In particular, the micromechanical behaviour of a star block copolymer and its blends with polystyrene was investigated by using electron microscopy and tensile testing. A homogeneous plastic flow of polystyrene lamellae (thin layer yielding) was observed if the lamella thickness was in the range of 20 nm. The deformation micromechanism switched to the formation of craze-like deformation zones when the average PS lamella thickness changed to about 30 nm and more. 相似文献
6.
Rasmont A Leclère P Doneux C Lambin G Tong JD Jérôme R Brédas JL Lazzaroni R 《Colloids and surfaces. B, Biointerfaces》2000,19(4):381-395
Atomic force microscopy (AFM) is used to study the phase separation process occurring in block copolymers in the solid state. The simultaneous measurement of the amplitude and the phase of the oscillating cantilever in the tapping mode operation provides the surface topography along with the cartography of the microdomains of different mechanical properties. This technique thus allows to characterize the size and shape of those microdomains and their organization at the surface (e.g. cubic lattice spheres, hexagonal lattice of cylinders, or lamellae). In this study, a series of symmetric triblock copolymers made of a inner elastomeric sequence (poly(butadiene) or poly(alkylacrylate)) and two outer thermoplastic sequences (poly(methylmethacrylate)) is analyzed by AFM in the tapping mode. The microphase separation and their morphology are essential factors for the potential of these materials as a new class of thermoplastic elastomers. Special attention is paid to the control of the surface morphology, as observed by AFM, by the molecular structure of the copolymers (volume ratio of the sequences, molecular weight, length of the alkyl side group) and the experimental conditions used for the sample preparation. The molecular structure of the chains is completely controlled by the synthesis, which relies on the sequential living anionic polymerization of the comonomers. The copolymers are analyzed as solvent-cast films, whose characteristics depend on the solvent used and the annealing conditions. The surface arrangement of the phase-separated elastomeric and thermoplastic microdomains observed on the AFM phase images is discussed on the basis of quantitative information provided by the statistical analysis by Fourier transform and grain size distribution calculations. 相似文献
7.
《Comptes Rendus Chimie》2014,17(4):310-315
Submicron non-aqueous emulsions, of interest for biomedical and cosmetic formulations, were developed for the system comprising poly(ethylene glycol) (PEG) 400 and Miglyol 812, an enzymatic degradable liquid glycerine ester. These emulsions, with PEG 400 as continuous phase and Miglyol 812 droplets, in the size range of 200 nm, were stabilized by a poly(butadiene)-b-poly(2-vinylpyridine) (PBut-b-P2VP) block copolymer with a composition close to 50/50 wt%. The droplet size, stability and the rheological characteristics were examined as a function of the copolymer concentration. An original aspect of these anhydrous emulsions, with a water miscible continuous phase, is their water dispersibility without additional surfactant. In fact, the initial anhydrous emulsion is sterically stabilized and after water addition at low pH, the protonated P2VP sequence of the copolymer provides the electro-steric stabilization. This oil-in-water emulsion is characterized by sub micron sized Miglyol 812 droplets in an aqueous phase of PEG 400 and water at pH 1. 相似文献
8.
The thermal oxidation process of SBS was studied by in situ FTIR and programming heating up DSC. The thermal oxidation mechanism of SBS was analyzed according to the activation energy and pre-exponential factor calculated by Friedman method. The results show that the oxidation of SBS is mainly on butadiene blocks. It is a self-catalyzed reaction containing four steps. The first step is the initiation of chain by free radical. The second is the growth and decomposition of polymer chain. The third is the formation of anhydride coming from dehydrated carbonyl. The fourth is the annihilation of active centers. Antioxidant which provides H atom easily can annihilate active free radical to protect SBS from thermal oxidation at lower temperature. 相似文献
9.
Hong Wang Jian Hua Dong Kun Yuan Qiu 《Journal of polymer science. Part A, Polymer chemistry》1998,36(5):695-702
ABA-type block copolymers of poly(trimethylene carbonate) with poly(ethylene glycol) (Mn 6820), PTMC-b-PEG-b-PTMC, were synthesized by the ring-opening polymerization of 1,3-dioxan-2-one (trimethylene carbonate) in the presence of poly-(ethylene glycol) with stannous octoate catalyst, and the copolymers with various compositions were obtained. The PTMC-b-PEG-b-PTMC copolymers were characterized with Fourier transform infrared and nuclear magnetic resonance spectroscopies. The intrinsic viscosities of resulting copolymers increased with the increase of 1,3-dioxan-2-one content in feed while the molar ratio of monomer over catalyst kept constant. It has been observed that the glass transition temperature (Tg) of the PTMC segments in copolymers, recorded from differential scanning calorimetry, was dependent on the composition of copolymers. The melting temperature (Tm) of PEG blocks in copolymer was lower than that of PEG polymer, and then disappeared as the length of PTMC blocks increased. The results of dynamic contact angle measurement clearly revealed that the hydrophilicity of resulting copolymers increased greatly with the increase of PEG content in copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 695–702, 1998 相似文献
10.
The goal of this work has been the synthesis of novel materials based on a biodegradable polycaprolactone-block-polytetrahydrofurane-block-polycaprolactone diol (PCL-b-PTHF-b-PCL). The segmented thermoplastic polyurethanes (STPU) have been synthesised in bulk without catalyst at different molar ratios and their characterization has been performed by different techniques. The physic-chemical interactions, responsible for the unique polyurethane properties, have been evaluated by total attenuated Fourier transform infrared spectroscopy (ATR-IR) in the amide I region using a Gaussian deconvolution technique and, on the other hand, atomic force microscopy (AFM) has been employed to determine the phase microstructures. The effect of increase the hard segment content (HS) has been discussed from the viewpoint of the miscibility of hard and soft segments, analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The influence of HS content on the microstructure-mechanical property relationships has also been investigated. Special attention has been focused on the wettability of the samples, measured through water contact angle measurements (WCA), to determine the tendency for biocompatibility of the samples. 相似文献
11.
Atomic Force Microscopy (AFM) in the tapping mode was used for the observation of bare poly (styrene/acrolein) P(SA) microspheres and microspheres with attached HSA. Prior to the AFM observations the P(SA) microspheres were immobilized covalently on the surface of quartz slides modified with -aminopropyltriethoxysilane. Atomic Force Microscopy pictures were registered for the dry samples. The partial coalescence of the P(SA) microspheres connected to the quartz surface with amino groups has been observed. The AFM pictures of the single P(SA) microspheres revealed that the surface of these particles is smooth and that any irregularities, if present, do not exceed 1 nm. The surface of microspheres with attached HSA has very clearly different morphology with regular pattern of HSA macromolecules. Cracks on the surfaces of some microspheres with HSA revealed that protein macromolecules are attached to these particles in several layers. In the case of some other microspheres the defects in protein attachment allowed the observation of the border between the bare surface of the P(SA) microspheres and the surface covered with protein macromolecules. Comparison of the thickness of the HSA layers on the P(SA) microspheres with the dimensions of HSA macromolecules, determined earlier from the x-ray studies, suggests that the first layer, 3.0±0.2 nm thick, is formed of the HSA macromolecules arranged flatly on the surface whereas protein macromolecules in the subsequent layers, each 8.6±1 nm thick, are adsorbed protruding from the surface. 相似文献
12.
Juan Rodriguez-Hernandez Emmanuel Ibarboure Eric Papon 《European Polymer Journal》2011,47(11):2063-2068
We describe the surface segregation of polypeptide-based block copolymer micelles to produce stimuli-responsive nanostructures at the polymer blend/air interface. Such structures were obtained by simultaneous surface migration and self assembly at the surface of diblock copolymer/homopolymer blends. We employed blends composed of homopolymer (PS) and an amphiphilic block copolymer polystyrene-b-poly(l-glutamic acid) (PS-b-PGA). The surface was functionalized based on the preferential segregation to the polymer blend/air interface of the hydrophilic PGA block of the diblock copolymer upon annealing to water vapor. The surface migration of the diblock copolymer to the interface was demonstrated both by XPS and contact angle measurements. As a consequence, the PGA interfacial attraction leads to a large surface excess on diblock copolymer which in turn, through macrophase and microphase separation, produced separated domains at the surface with regions composed either of homo or block copolymer. Herein we demonstrate that the use of asymmetric diblock copolymers with a higher content in PS lead to spherical micellar assemblies randomly distributed at the surface. As observed by AFM imaging the blend composition, i.e. the amount of block copolymer within the blend influences the density of micelles at the surface. Finally, when exposed to water, the pH affects the surface morphology. The PGA segments are collapsed at low pH values and extended at pH values above 4.8, thus inducing variations on the topography of the films at the nanometer scale. 相似文献
13.
14.
Mehran Asad Ayoubi Kaizheng Zhu Bo Nyström Ulf Olsson Kristoffer Almdal Alexei R. Khokhlov Lennart Piculell 《Journal of Polymer Science.Polymer Physics》2013,51(23):1657-1671
Samples of compositionally (highly) asymmetric diblock copolymers and, also, mixtures of diblock and triblock copolymers (the latter obtained as end‐coupling products of two diblock molecules of the mixture), composed of (a) monodisperse majority block(s) of poly(styrene) (PS) and a polydisperse minority block of poly(methacrylic acid) (PMAA), microphase separate into spherical PMAA microdomains, either in disordered liquid‐like state or body‐centered‐cubic (BCC) arrangement, at various annealing temperatures T, in the strong segregation regime SSR. We found that (i) the microphase separated state is favored over an anticipated molecularly homogenous state, (ii) the spherical microdomain morphology (with BCC symmetry) is favored over an anticipated hexagonally packed cylindrical morphology, (iii) the extent of the dissolution of short PMAA blocks in the PS material can be quantified, (iv) the spherical microdomains are dilated, and (v) despite molecular‐weight (and architectural) polydispersity, well‐ordered BCC structures can be obtained. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2013 , 51, 1657–1671 相似文献
15.
E. Serrano 《European Polymer Journal》2009,45(4):1046-1057
Molecular dynamics of diglycidyl ether of bisphenol A (DGEBA) epoxy resin modified with an epoxidized poly(styrene-b-butadiene) (SepB) linear block copolymer has been monitored during cure and microphase separation process by dielectric relaxation spectroscopy (DRS) for wide frequency and temperature ranges. Different primary and secondary relaxation processes have been analyzed for neat components and ternary mixture. Relaxational behaviour has been modelled with Havriliak-Negami, Vogel-Fulcher-Tammann and Arrhenius equations and fitting parameters and their evolution have been obtained. The retention of the epoxidized poly(butadiene) (PepB) block in the epoxy-rich phase during all the polymerization process, previously detected by our group with atomic force and transmission electron microscopies, has been confirmed by dielectric relaxation spectroscopy. The evolution of molecular dynamics during the polymerization process of the epoxy resin in the ternary system indicates a change in the trend of the main relaxation at times that agree with phase separation detected by rheology. 相似文献
16.
Synthesis of the block sulfonated poly(ether ether ketone)s (S-PEEKs) materials for proton exchange membrane 总被引:2,自引:0,他引:2
Chengji Zhao Xianfeng Li Zhe Wang Zhiyu Dou Shuangling Zhong Hui Na 《Journal of membrane science》2006,280(1-2):643-650
To improve the proton conductivity of sulfonated poly(ether ether ketone)s (SPEEK) with low sulfonated degrees, a series of block SPEEK copolymers were prepared by a two-stage one pot process: first the hydrophobic block was prepared with the desired length, then the monomers for the hydrophilic block were added to the first reactive flask to form block copolymers. Membranes were cast from their DMF solutions, and characterized by determining the ion-exchange capacity, water uptake, proton conductivity and mechanical properties. Block-3 with the longer hydrophobic chain shows enhanced performance than the random one in usage for PEM. SAXS was employed to investigate the microstructure effects on the above properties. Larger ionic cluster size and larger proton transport channel in block-3 SPEEK membranes are detected from the result of SAXS. It is believed that this microstructure feature attributes to the enhanced proton conductivity values of block-3 membrane at low IEC. 相似文献
17.
This paper reports the investigation of the nanostructured surface morphology of novel arborescent polyisobutylene-block-polystyrene (PIB-PS) copolymers, in comparison with linear PS-PIB-PS triblock copolymers, using atomic force microscopy (AFM) in tapping mode. Arborescent PIB-PS samples displayed interesting new phase morphologies, which changed dramatically upon annealing but remained irregular. Linear PS-PIB-PS samples showed morphologies similar to those previously found by transmission electron microscopy (TEM) in cryomicrotomed bulk samples, ranging from spherical/cylindrical to lamellar nanometer-sized discreet PS phases dispersed in a continuous PIB matrix. Annealing the samples resulted in more ordered structures.Three-dimensional AFM image and section analysis indicated a height difference between PIB and PS in the block copolymers, which became more prominent during annealing. This feature was verified on compression moulded and protein coated samples. The arborescent PIB-PS materials displayed thermoplastic elastomeric behaviour with a tensile strength between 7 and 10 MPa and elongation ranging from 1000% to 1830%. In comparison, linear triblock samples had a tensile strength between 7 and 20 MPa and elongation ranging from 380% to 640%. Block copolymers with irregular elastomeric midsegments may emerge as a new class of TPEs. 相似文献
18.
Two synthetic ways were experimented to prepare new architectures of block copolymers made of poly(ethylene glycol) (PEG) and poly(methylthiirane). The coupling of both blocks conveniently end-capped as well as anionic polymerization of methylthiirane initiated by PEG-thiols gave readily the copolymers. Their characterization by 1H NMR, SEC and IR confirmed the expected structures. 相似文献
19.
Alberto Castro-Muñiz Juan Ignacio Paredes Amelia Martínez-Alonso Juan M.D. Tascón 《Polymer Degradation and Stability》2010,95(4):702-707
The objective of this work was to investigate the changes in surface morphology associated with thermal degradation of poly(p-phenylene terephthalamide) (PPTA) into chars. To this end, PPTA samples decomposed at several temperatures up to 800 °C were studied on a local scale using atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). Domains with a diameter of 40-50 nm started appearing among PPTA nanofibrils at about 500 °C. At this temperature and above, a film coating the fibre developed. This layer was much less rigid than PPTA, and remained deposited on the fibres, even at high temperatures. At 800 °C, the STM images showed a surface distribution typical of a carbonaceous material, isotropic although somewhat heterogeneous. When an intermediate isothermal step (500 °C, 200 min) was introduced along with heat treatment of PPTA under a constant rate, the material obtained at the end of this step was conductive enough to be studied by STM. Although the coating over the fibres also remained after the isothermal step, it was less homogeneous than in the absence of isothermal treatment. On further heating, the residue exhibited a surface morphology typical of a carbonaceous material, but much more homogeneous and isotropic than in the absence of the isothermal step. 相似文献
20.
Eudokia K. Oikonomou Elefterios K. Pefkianakis Joannis K. Kallitsis 《European Polymer Journal》2008,44(6):1857-1864
Amphiphilic block copolymers of methyl methacrylate (MMA) and sodium styrene sulfonate (SSNa) were successfully synthesized via direct atom transfer radical polymerization (ATRP) of SSNa. First, poly(sodium styrene sulfonate) (PSSNa) or poly(methyl methacrylate) (PMMA) macroinitiators were prepared using proper ATRP systems for each case. In some cases, functional initiators, which allow further reactions, were used. The macroinitiators were characterized and further used to synthesize PSSNa/PMMA block copolymers, by using proper solvent combinations, such as N,N-dimethylformamide/water or methanol/water at appropriate volume ratios, in order to ensure solubility of the synthesized amphiphilic copolymers. The molecular weight of the copolymers was determined by gel permeation chromatography, using water as eluent. By using a combination of analytical techniques like 1H NMR, FTIR and thermogravimetry, the chemical structure and the actual copolymer composition were determined. Since, the block copolymers were soluble in water, forming hydrophilic/hydrophobic domains in aqueous solution, their micellization behavior was further studied by pyrene fluorescence probing. 相似文献