首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New bounds are given for the L2-norm of the solution of the Kuramoto-Sivashinsky equation $$\partial _t U(x,t) = - (\partial _x^2 + \partial _x^4 )U(x,t) - U(x,t)\partial _x U(x,t)$$ , for initial data which are periodic with periodL. There is no requirement on the antisymmetry of the initial data. The result is $$\mathop {\lim \sup }\limits_{t \to \infty } \left\| {U( \cdot ,t)} \right\|_2 \leqslant const. L^{8/5} $$ .  相似文献   

2.
We prove the existence of front solutions for the Ginzburg-Landau equation $$\partial _t u(x,t) = \partial _x^2 u(x,t) + (1 - |u(x,t)|^2 )u(x,t)$$ , interpolating between two stationary solutions of the form \(u(x) = \sqrt {1 - q^2 } e^{iqx}\) with different values ofq atx=±∞. Such fronts are shown to exist when at least one of theq is in the Eckhaus-unstable domain.  相似文献   

3.
We prove that if the initial condition of the Swift–Hohenberg equation $$\partial _t u(x,t) = (\varepsilon ^2 - (1 + \partial _x^2 )^2 ){\text{ }}u(x,t) - u^3 (x,t)$$ is bounded in modulus by Ce ?βx as x→+∞, the solution cannot propagate to the right with a speed greater than $$\mathop {\sup }\limits_{0 < {\gamma } \leqslant \beta } {\gamma }^{ - 1} (\varepsilon ^2 + 4{\gamma }^2 + 8{\gamma }^4 ).$$ This settles a long-standing conjecture about the possible asymptotic propagation speed of the Swift–Hohenberg equation. The proof does not use the maximum principle and is simple enough to generalize easily to other equations. We illustrate this with an example of a modified Ginzburg–Landau equation, where the critical speed is not determined by the linearization alone.  相似文献   

4.
In this paper we will study the nonlinear Schrödinger equations: $$\begin{gathered} i\partial _t u + \tfrac{1}{2}\Delta u = \left| u \right|^2 u, (t,x) \in \mathbb{R} \times \mathbb{R}_x^n , \hfill \\ u(0,x) = \phi (x), x \in \mathbb{R}_x^n \hfill \\ \end{gathered} $$ . It is shown that the solutions of (*) exist and are analytic in space variables fort∈??{0} if φ(x) (∈H 2n+1,2(? x n )) decay exponentially as |x|→∞ andn≧2.  相似文献   

5.
Let $$\begin{gathered} u^* = u + \in \eta (x,{\text{ }}t,{\text{ }}u), \hfill \\ \hfill \\ \hfill \\ x^* = x + \in \xi (x, t, u{\text{),}} \hfill \\ \hfill \\ \hfill \\ {\text{t}}^{\text{*}} = {\text{ }}t + \in \tau {\text{(}}x,{\text{ }}t,{\text{ }}u), \hfill \\ \end{gathered}$$ be an infinitesimal invariant transformation of the evolution equation u t =H(x,t,u,?u/?x,...,? n :u/?x n . In this paper we give an explicit expression for \(\eta ^{X^i }\) in the ‘determining equation’ $$\eta ^T = \sum\limits_{i = 1}^n {{\text{ }}\eta ^{X^i } {\text{ }}\frac{{\partial H}}{{\partial u_i }} + \eta \frac{{\partial H}}{{\partial u_{} }} + \xi \frac{{\partial H}}{{\partial x}} + \tau } \frac{{\partial H}}{{\partial t}},$$ where u i =? i u/?x i . By using this expression we derive a set of equations with η, ξ, τ as unknown functions and discuss in detail the cases of heat and KdV equations.  相似文献   

6.
We consider the nonlinear elliptic degenerate equation (1) $$ - x^2 \left( {\frac{{\partial ^2 u}}{{\partial x^2 }} + \frac{{\partial ^2 u}}{{\partial y^2 }}} \right) + 2u = f(u)in\Omega _a ,$$ where $$\Omega _a = \left\{ {(x,y) \in \mathbb{R}^2 ,0< x< a,\left| y \right|< a} \right\}$$ for some constanta>0 andf is aC functions on ? such thatf(0)=f′(0)=0. Our main result asserts that: ifuC \((\bar \Omega _a )\) satisfies (2) $$u(0,y) = 0for\left| y \right|< a,$$ thenx ?2 u(x,y)∈C \(\left( {\bar \Omega _{a/2} } \right)\) and in particularuC \(\left( {\bar \Omega _{a/2} } \right)\) .  相似文献   

7.
Chandra  Ajay  Erhard  Dirk  Shen  Hao 《Journal of statistical physics》2019,175(6):1080-1106
Journal of Statistical Physics - In this article we prove local well-posedness of the system of equations $$\partial _t h_{i}= \sum _{j=1}^{i}\partial _x^2 h_{j}+ (\partial _x h_{i})^2 + \xi $$ on...  相似文献   

8.
We consider the solutionu ?(t) of the saturated nonlinear Schrödinger equation (1) $$i\partial u/\partial t = - \Delta u - \left| u \right|^{4/N} u + \varepsilon \left| u \right|^{q - 1} uandu(0,.) = \varphi (.)$$ where \(N \geqslant 2,\varepsilon > 0,1 + 4/N< q< (N + 2)/(N - 2),u:\mathbb{R} \times \mathbb{R}^N \to \mathbb{C},\varphi \) , ? is a radially symmetric function inH 1(R N ). We assume that the solution of the limit equation is not globally defined in time. There is aT>0 such that \(\mathop {\lim }\limits_{t \to T} \left\| {u(t)} \right\|_{H^1 } = + \infty \) , whereu(t) is solution of (1) $$i\partial u/\partial t = - \Delta u - \left| u \right|^{4/N} uandu(0,.) = \varphi (.)$$ For ?>0 fixed,u ?(t) is defined for all time. We are interested in the limit behavior as ?→0 ofu ?(t) fort≥T. In the case where there is no loss of mass inu ? at infinity in a sense to be made precise, we describe the behavior ofu ? as ? goes to zero and we derive an existence result for a solution of (1) after the blow-up timeT in a certain sense. Nonlinear Schrödinger equation with supercritical exponents are also considered.  相似文献   

9.
Let (?, τ, ω) denote aW*-algebra ?, a semigroupt>0?τ t of linear maps of ? into ?, and a faithful τ-invariant normal state ω over ?. We assume that τ is strongly positive in the sense that $$\tau _t (A^ * A) \geqq \tau _t (A)^ * \tau _t (A)$$ for allA∈? andt>0. Therefore one can define a contraction semigroupT on ?= \(\overline {\mathcal{M}\Omega } \) by $$T_t A\Omega = \tau _t (A)\Omega ,{\rm A} \in \mathcal{M},$$ where Ω is the cyclic and separating vector associated with ω. We prove 1. the fixed points ?(τ) of τ are given by ?(τ)=?∩T′=?∩E′, whereE is the orthogonal projection onto the subspace ofT-invariant vectors, 2. the state ω has a unique decomposition into τ-ergodic states if, and only if, ?(τ) or {?υE}′ is abelian or, equivalently, if (?, τ, ω) is ?-abelian, 3. the state ω is τ-ergodic if, and only if, ?υE is irreducible or if $$\mathop {\inf }\limits_{\omega '' \in Co\omega 'o\tau } \left\| {\omega '' - \omega '} \right\| = 0$$ for all normal states ω′ where Coω′°τ denotes the convex hull of {ω′°τ t } t>0. Subsequently we assume that τ is 2-positive,T is normal, andT* t ?+Ω \( \subseteqq \overline {\mathcal{M}_ + \Omega } \) , and then prove 4. there exists a strongly positive semigroup |τ| which commutes with τ and is determined by $$\left| \tau \right|_t \left( A \right)\Omega = \left| {T_t } \right|A\Omega ,$$ 5. results similar to 1 and 2 apply to |τ| but the τ-invariant state ω is |τ|-ergodic if, and only if, $$\mathop {\lim }\limits_{t \to \infty } \left\| {\omega 'o\tau _t - \omega } \right\| = 0$$ for all normal states ω′.  相似文献   

10.
We consider perturbations of a massless Gaussian lattice field on ? d ,d≧3, which preserves the continuous symmetry of the Hamiltonian, e.g., $$ - H = \sum\limits_{< x,y > } {(\phi _x - \phi _y )^2 + T(\phi _x - \phi _y )^4 ,\phi _x \in \mathbb{R}.} $$ It is known that for allT>0 the correlation functions in this model do not decay exponentially. We derive a power law upper bound for all (truncated) correlation functions. Our method is based on a combination of the log concavity inequalities of Brascamp and Lieb, reflection positivity and the Fortuin, Kasteleyn and Ginibre (F.K.G.) inequalities.  相似文献   

11.
We show that for most non-scalar systems of conservation laws in dimension greater than one, one does not have BV estimates of the form $$\begin{gathered} \parallel \overline V u(\overline t )\parallel _{T.V.} \leqq F(\parallel \overline V u(0)\parallel _{T.V.} ), \hfill \\ F \in C(\mathbb{R}),F(0) = 0,F Lipshitzean at 0, \hfill \\ \end{gathered} $$ even for smooth solutions close to constants. Analogous estimates forL p norms $$\parallel u(\overline t ) - \overline u \parallel _{L^p } \leqq F(\parallel u(0) - \overline u \parallel _{L^p } ),p \ne 2$$ withF as above are also false. In one dimension such estimates are the backbone of the existing theory.  相似文献   

12.
The surface water waves in a water tunnel can be described by systems of the form [Bona and Chen, Physica D116, 191 (1998)] 1 $$ \label{BWE} \left\{ \begin{array}{l} v_t+u_x+(uv)_x+au_{xxx}-bv_{xxt}=0, \\ u_t+v_x+uu_x+cv_{xxx}-du_{xxt}=0, \end{array} \right. $$ where a, b, c and d are real constants. In general, the exact travelling wave solutions will be helpful in the theoretical and numerical study of the nonlinear evolution systems. In this paper, we obtain exact travelling wave solutions of system (1) using the modified $\tanh$ $\coth$ function method with computerized symbolic computation.  相似文献   

13.
We consider the time-dependent Schrödinger-Hartree equation (1) $$iu_t + \Delta u = \left( {\frac{1}{r}*|u|^2 } \right)u + \lambda \frac{u}{r},(t, x) \in \mathbb{R} \times \mathbb{R}^3 ,$$ (2) $$u(0,x) = \phi (x) \in \Sigma ^{2,2} ,x \in \mathbb{R}^3 ,$$ where λ≧0 and \(\Sigma ^{2,2} = \{ g \in L^2 ;\parallel g\parallel _{\Sigma ^{2,2} }^2 = \sum\limits_{|a| \leqq 2} {\parallel D^a g\parallel _2^2 + \sum\limits_{|\beta | \leqq 2} {\parallel x^\beta g\parallel _2^2< \infty } } \} \) . We show that there exists a unique global solutionu of (1) and (2) such that $$u \in C(\mathbb{R};H^{1,2} ) \cap L^\infty (\mathbb{R};H^{2,2} ) \cap L_{loc}^\infty (\mathbb{R};\Sigma ^{2,2} )$$ with $$u \in L^\infty (\mathbb{R};L^2 ).$$ Furthermore, we show thatu has the following estimates: $$\parallel u(t)\parallel _{2,2} \leqq C,a.c. t \in \mathbb{R},$$ and $$\parallel u(t)\parallel _\infty \leqq C(1 + |t|)^{ - 1/2} ,a.e. t \in \mathbb{R}.$$   相似文献   

14.
Thep th Gel'fand-Dickey equation and the string equation [L, P]=1 have a common solution τ expressible in terms of an integral overn×n Hermitean matrices (for largen), the integrand being a perturbation of a Gaussian, generalizing Kontsevich's integral beyond the KdV-case; it is equivalent to showing that τ is a vacuum vector for aW ?p + , generated from the coefficients of the vertex operator. This connection is established via a quadratic identity involving the wave function and the vertex operator, which is a disguised differential version of the Fay identity. The latter is also the key to the spectral theory for the two compatible symplectic structures of KdV in terms of the stress-energy tensor associated with the Virasoro algebra. Given a differential operator $$L = D^p + q_2 (t) D^{p - 2} + \cdots + q_p (t), with D = \frac{\partial }{{dx}},t = (t_1 ,t_2 ,t_3 ,...),x \equiv t_1 ,$$ consider the deformation equations1 (0.1) $$\begin{gathered} \frac{{\partial L}}{{\partial t_n }} = [(L^{n/p} )_ + ,L] n = 1,2,...,n + - 0(mod p) \hfill \\ (p - reduced KP - equation) \hfill \\ \end{gathered} $$ ofL, for which there exists a differential operatorP (possibly of infinite order) such that (0.2) $$[L,P] = 1 (string equation).$$ In this note, we give a complete solution to this problem. In section 1 we give a brief survey of useful facts about theI-function τ(t), the wave function Ψ(t,z), solution of ?Ψ/?t n=(L n/p) x Ψ andL 1/pΨ=zΨ, and the corresponding infinitedimensional planeV 0 of formal power series inz (for largez) $$V^0 = span \{ \Psi (t,z) for all t \in \mathbb{C}^\infty \} $$ in Sato's Grassmannian. The three theorems below form the core of the paper; their proof will be given in subseuqent sections, each of which lives on its own right.  相似文献   

15.
In this paper we study the Cauchy problem for the generalized equation of finite-depth fluids
  相似文献   

16.
In this paper we study soliton-like solutions of the variable coefficients, the subcritical gKdV equation $$u_t + (u_{xx} -\lambda u + a(\varepsilon x) u^m )_x =0,\quad {\rm in} \quad \mathbb{R}_t\times\mathbb{R}_x, \quad m=2,3\,\, { \rm and }\,\, 4,$$ with ${\lambda\geq 0, a(\cdot ) \in (1,2)}$ a strictly increasing, positive and asymptotically flat potential, and ${\varepsilon}$ small enough. In previous works (Mu?oz in Anal PDE 4:573?C638, 2011; On the soliton dynamics under slowly varying medium for generalized KdV equations: refraction vs. reflection, SIAM J. Math. Anal. 44(1):1?C60, 2012) the existence of a pure, global in time, soliton u(t) of the above equation was proved, satisfying $$\lim_{t\to -\infty}\|u(t) - Q_1(\cdot -(1-\lambda)t) \|_{H^1(\mathbb{R})} =0,\quad 0\leq \lambda<1,$$ provided ${\varepsilon}$ is small enough. Here R(t, x) := Q c (x ? (c ? ??)t) is the soliton of R t +? (R xx ??? R + R m ) x =?0. In addition, there exists ${\tilde \lambda \in (0,1)}$ such that, for all 0?<??? <?1 with ${\lambda\neq \tilde \lambda}$ , the solution u(t) satisfies $$\sup_{t\gg \frac{1}{\varepsilon}}\|u(t) - \kappa(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}\lesssim \varepsilon^{1/2}.$$ Here ${{\rho'(t) \sim (c_\infty(\lambda) -\lambda)}}$ , with ${{\kappa(\lambda)=2^{-1/(m-1)}}}$ and ${{c_\infty(\lambda)>\lambda}}$ in the case ${0<\lambda<\tilde\lambda}$ (refraction), and ${\kappa(\lambda) =1}$ and c ??(??)?<??? in the case ${\tilde \lambda<\lambda<1}$ (reflection). In this paper we improve our preceding results by proving that the soliton is far from being pure as t ?? +???. Indeed, we give a lower bound on the defect induced by the potential a(·), for all ${{0<\lambda<1, \lambda\neq \tilde \lambda}}$ . More precisely, one has $$\liminf_{t\to +\infty}\| u(t) - \kappa_m(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}>rsim \varepsilon^{1 +\delta},$$ for any ${{\delta>0}}$ fixed. This bound clarifies the existence of a dispersive tail and the difference with the standard solitons of the constant coefficients, gKdV equation.  相似文献   

17.
For a conformally flat metric ds2 = a2(η)(dη2 – dx2 – y2 – dz2) Vilenkin obtained the equation $$\frac{\partial }{{\partial _{\eta } }}\left[ {\frac{{a^2 \left( {\eta } \right)\dot y}}{{\sqrt {1 + y'^2 - \dot y^2 } }}} \right] = \frac{\partial }{{\partial _x }}\left[ {\frac{{a^2 \left( {\eta } \right)\dot y'}}{{\sqrt {1 + y'^2 - \dot y^2 } }}} \right]$$ for a cosmic string and gave some particular solutionsboth for a = const and a const. The present workcompletely solves the equation for a = const and extendthe work of Vilenkin for a ≠ const.  相似文献   

18.
19.
By the introduction of some ansatz equations, we have obtained several new classes of traveling (solitary) wave solutions to the nonlinear diffusion equation $$f_1 (u)u_t + f_2 (u)u_x + f_3 (u)u_{xx} + f_4 (u)u_x^2 = f_5 (u)$$ and the nonlinear wave equation $$f_1 (u)u_u + f_2 (u)u_t + f_3 (u)u_{xx} + f_4 (u)u_x + f_5 (u)u_x^2 + \cdots = f_6 (u)$$ Some applications of these solutions are discussed.  相似文献   

20.
The phase dismatching effect on the scattering due to screw dislocations is reformulated to take the discreteness of lattice sites into account. Thet-matrix for an electron scattered from the statep top′ is $$\begin{gathered} t\left( {p,p'} \right) = ip_z T\exp \left\{ {i\left( {p - p'} \right) \cdot m_A } \right\}\exp \left\{ {i\left( {p - p'} \right) \cdot \left( {i + j} \right)/2} \right\} \hfill \\ \cdot \frac{{\left[ {\exp \left( { - ip_y } \right) - \exp \left( {ip'_y } \right)} \right] + \left( {\upsilon _y /\upsilon _x } \right)\left[ {\exp \left( {ip_x } \right) - \exp \left( { - ip'_x } \right)} \right]}}{{1 - \exp \left[ {i\left\{ {\left( {p_x - p'_x } \right) + \left( {\upsilon _y /\upsilon _x } \right)\left( {p_y - p'_y } \right)} \right\}} \right]}} \hfill \\ \end{gathered}$$ for 0≦v y v x ≦1 and |p y |, |p′ y |?1. Here,v is the group velocity of the incident electron andm A is the position of the dislocation axis. All vector notations represent vectors in two-dimensional space, the unit vectors of which are represented byi andj. Expressions for |p y |, |p′ y |?π and other values ofv are obtained through simple modifications. As an application, the resistivity due to screw dislocations is discussed qualitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号