首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

2.
Let N denote the Hardy-Littlewood maximal operator for the familyR of one parameter rectangles. In this paper, we obtain that for 1 w p (lr) to L W P (lr) if and only if w ∈ AP(R); for 1≤p<∞, N is bounded from L W P (lr) to weak L W P (lr) if and only if W ∈ AP(R). Here we say W∈Ap (1), if $$\begin{gathered} \mathop {sup}\limits_{R \in R} \left( {\tfrac{1}{{|R|}}\smallint _r wdx} \right)\left( {\tfrac{1}{{|R|}}\smallint _R w^{ - 1/(p - 1)} dx} \right)^{p - 1}< \infty ,1< p< \infty , \hfill \\ (Nw)(x) \leqslant Cw(x)a.e.,p = 1 \hfill \\ \end{gathered} $$ ,  相似文献   

3.
In this paper, the authors give the boundedness of the commutator [b, ????,?? ] from the homogeneous Sobolev space $\dot L_\gamma ^p \left( {\mathbb{R}^n } \right)$ to the Lebesgue space L p (? n ) for 1 < p < ??, where ????,?? denotes the Marcinkiewicz integral with rough hypersingular kernel defined by $\mu _{\Omega ,\gamma } f\left( x \right) = \left( {\int_0^\infty {\left| {\int_{\left| {x - y} \right| \leqslant t} {\frac{{\Omega \left( {x - y} \right)}} {{\left| {x - y} \right|^{n - 1} }}f\left( y \right)dy} } \right|^2 \frac{{dt}} {{t^{3 + 2\gamma } }}} } \right)^{\frac{1} {2}} ,$ , with ?? ?? L 1(S n?1) for $0 < \gamma < min\left\{ {\frac{n} {2},\frac{n} {p}} \right\}$ or ?? ?? L(log+ L) ?? (S n?1) for $\left| {1 - \frac{2} {p}} \right| < \beta < 1\left( {0 < \gamma < \frac{n} {2}} \right)$ , respectively.  相似文献   

4.
Рассматривается воп рос о представлении о ператора Гильберта и сопряжен ной функцииA-интегралом. Доказывается следую щая Теорема. Если ? - такая неотрицательная фун кция на [0, ∞), что х?1?(х) монотонно не убывает на (0, ∞) и для н екоторого Н> 0 \(\mathop \smallint \limits_H^\infty \varphi ^{ - 1} (x)dx< \infty\) , а определенная на R функ ция fε?∩?(?), то почти всюду оператор Гильберта $$\tilde f(x) = - \frac{1}{\pi }(A)\mathop \smallint \limits_0^\infty \frac{{f(x + t) - f(x - t)}}{t}dt$$ . Из данной теоремы сле дует, что для функций и з ?p, 1<р<#x221E;, оператор Гильберта и сопряженная функция представляютсяA-инте гралом. Что для функций из ?1 п одобное утверждение неверно, показывает следующа я теорема. Теорема.Существует т акая суммируемая на R ф ункция f≧0, что почти всюду $$\mathop {\lim sup}\limits_{n \to \infty } \mathop \smallint \limits_0^\infty \left[ {\frac{{f(x + t) - f(x - t)}}{t}} \right]_n dt = \infty$$ .  相似文献   

5.
Пусть (X, A, u) — пространст во с конечной мерой, (ξk) 1 — последовательност ь функций, \(\xi _k \varepsilon L_{2r} (X), r > 1, \int\limits_X {\xi _k d\mu = 0} \) . Изучаются условия, п ри которых справедли вgа - у. з. б.ч., т. e. (ξ k) суммируется к ну лю почти всюду методо м (С, а),а > 0. Приведем два резу льтата. 1) Если (ξ k) — слабо мульт ипликативная систем а (в частности, мартингал-разности или независимая сист ема), то условие $$\mathop \sum \limits_1^\infty \mathop {\smallint }\limits_X \left| {\xi _k } \right|^{2r} d\mu \cdot c_r (k,\alpha )< \infty $$ влечетβ - у.з.б.ч. Здесьc r(k,α)=k -2rα при 0<α<(r+1)/2r, cr=k?(r+1) In3r-1 k приа=(r+1)/2r, сr=k?(r+1) при а >(r+1)/2r. 2) Если (ξ k) независимы, k=0, (r+1)/2r<α=1, то условия $$\mathop \sum \limits_{k = 1}^\infty \frac{{(M\xi _k^2 )^r }}{{k^{r + 1} }}< \infty ,\mathop \sum \limits_{k = 1}^\infty \frac{{M|\xi _k |^{2r} }}{{k^{2r\alpha } }}< \infty $$ влекут за собой а - у. з. б. ч.  相似文献   

6.
Let Es=[0, 1]s be then-dimensional unit cube, 1<p<∞, anda=(a 1, ...,a s ) some set of natural numbers. Denote byL p (a) , (E s ) the class of functionsf: E s → C for which $$\left\| {\frac{{\partial ^{b_1 + \cdots + b_s } f}}{{\partial x_1^{b_1 } \cdots \partial x_s^{b_s } }}} \right\|_p \leqslant 1,$$ where $$0< b_1< a_1 , ..., 0< b_s< a_s .$$ Set $$R_p^{\left( a \right)} \left( N \right) = \mathop {\inf }\limits_{card \mathfrak{S} = N} R_\mathfrak{S} \left( {L_p^{\left( a \right)} \left( {E^s } \right)} \right),$$ where $R_\mathfrak{S} \left( {L_p^{\left( a \right)} \left( {E^s } \right)} \right)$ is the error of the quadrature formulas on the mesh $\mathfrak{S}$ (for the classL p (a) (E s )), consisting of N nodes and weights, and the infimum is taken with respect to all possibleN nodes and weights. In this paper, the two-sided estimate $$\frac{{\left( {\log N} \right)^{{{\left( {l - 1} \right)} \mathord{\left/ {\vphantom {{\left( {l - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} }}{{N^d }} \ll _{p, a} R^{\left( a \right)} \left( N \right) \ll _{p, a} \frac{{\left( {\log N} \right)^{{{\left( {l - 1} \right)} \mathord{\left/ {\vphantom {{\left( {l - 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}} }}{{N^d }}$$ is proved for every natural numberN > 1, whered=min{a 1, ...,a s }, whilel is the number of those components of a which coincide withd. An analogous result is proved for theL p -norm of the deviation of meshes.  相似文献   

7.
For the hypersurface Γ=(y,γ(y)), the singular integral operator along Γ is defined by. $$Tf(x,x_n ) = P.V.\int_{\mathbb{R}^n } {, f(x - y,x_n ) - } \gamma (y))_{\left| y \right|^{n - 1} }^{\Omega (v)} dy$$ where Σ is homogeneous of order 0, $ \int_{\Sigma _{n \lambda } } {\Omega (y')dy'} = 0 $ . For a certain class of hypersurfaces, T is shown to be bounded on Lp(Rn) provided Ω∈L α 1 n?2),P>1.  相似文献   

8.
A necessary and sufficient condition for the boundedness of the operator: $(T_{s,u,u} f)(\xi ) = h^{u + \tfrac{v}{a}} (\xi )\smallint _{\Omega _a } h^s (\xi ')K_{s,u,v} (\xi ,\xi ')f(\xi ')dv(\xi ') on L^p (\Omega _a ,dv_\lambda ),1< p< \infty $ , is obtained, where $\Omega _a = \left\{ {\xi = (z,w) \in \mathbb{C}^{n + m} :z \in \mathbb{C}^n ,w \in \mathbb{C}^m ,|z|^2 + |w|^{2/a}< 1} \right\},h(\xi ) = (1 - |z|^2 )^a - |w|^2 $ andK x,u,v (ξ,ξ′).This generalizes the works in literature from the unit ball or unit disc to the weakly pseudoconvex domain ω a . As an appli cation, it is proved thatf?L H p a ,dv λ) implies $h\tfrac{{|a|}}{a} + |\beta |(\xi )D_2^a D_z^\beta f \in L^p (\Omega _a ,dv_\lambda ),1 \leqslant p< \infty $ , for any multi-indexa=(α1,?,α n and ß = (ß1, —ß). An interesting question is whether the converse holds.  相似文献   

9.
Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. LetfL(I n ) (I≡[0,1]. Set $${\mathcal{N}}_\eta f(x) = \sup \frac{1}{{\left| Q \right|\eta (\left| Q \right|^{1/n} )}} \smallint _Q \left| {f(t) - f(x)} \right|dt,$$ , where the supremum is taken over all cubes containing the pointx. Forη=t α (0<α≤1) this definition was given by A.Calderón. In the paper we prove estimates of the maximal functions ${\mathcal{N}}_\eta f$ , along with some embedding theorems. In particular, we prove the following Sobolev type inequality: if $$1 \leqslant p< q< \infty , \theta \equiv n(1/p - 1/q)< 1, and \eta (t) \leqslant t^\theta \sigma (t),$$ , then $$\parallel {\mathcal{N}}_\sigma {f} {\parallel_{q,p}} \leqslant c \parallel {\mathcal{N}}_\eta {f} {\parallel_p} .$$ . Furthermore, we obtain estimates of ${\mathcal{N}}_\eta f$ in terms of theL p -modulus of continuity off. We find sharp conditions for ${\mathcal{N}}_\eta f$ to belong toL p (I n ) and the Orlicz class?(L), too.  相似文献   

10.
Найдены методы восст ановления интеграла по информации $$I\left( f \right) = \left\{ {f^{(j)} \left( {x_i } \right)\left( {j = 0, ..., \gamma _i - 1; i = 1, ..., n; 1 \leqq \gamma _i \leqq r; \gamma _i + ... + \gamma _n \leqq N} \right.} \right\},$$ оптимальные на класс ахW p r ,r=1,2,...; 1≦p≦∞. Это позволило, в частност и, получить наилучшие для классаW p r квадратурные форму лы вида $$\mathop \smallint \limits_0^1 f\left( x \right)dx = \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 1}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right)$$ И $$\mathop \smallint \limits_0^1 f\left( x \right)dx = af\left( 0 \right) + \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 0}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + bf\left( 1 \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right).$$   相似文献   

11.
Letf εC[?1, 1], ?1<α,β≤0, let $f \in C[ - 1, 1], - 1< \alpha , \beta \leqslant 0$ , letS n α, β (f, x) be a partial Fourier-Jacobi sum of ordern, and let $$\nu _{m, n}^{\alpha , \beta } = \nu _{m, n}^{\alpha , \beta } (f) = \nu _{m, n}^{\alpha , \beta } (f,x) = \frac{1}{{n + 1}}[S_m^{\alpha ,\beta } (f,x) + ... + S_{m + n}^{\alpha ,\beta } (f,x)]$$ be the Vallée-Poussin means for Fourier-Jacobi sums. It was proved that if 0<a≤m/n≤b, then there exists a constantc=c(α, β, a, b) such that ‖ν m, n α, β ‖ ≤c, where ‖ν m, n α, β ‖ is the norm of the operator ν m, n α, β inC[?1,1].  相似文献   

12.
Пусть {Xj} - строго стац ионарная последоват ельностьс ?перемешиванием, EXj-Q,E¦-X j¦r< для некоторогоr>2. Положим \(S_n = \mathop \sum \limits_{j = 1}^n X_j \) . Ибрагимов (1962) доказал, что если приn →∞, то 1 $$\mathop {\lim }\limits_{n \to \infty } P\{ S_n /\sigma _n< x\} = (2\pi )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \mathop \smallint \limits_{ - \infty }^x e^{{{ - u^2 } \mathord{\left/ {\vphantom {{ - u^2 } 2}} \right. \kern-\nulldelimiterspace} 2}} du.$$ В работе установлено, что при указанных выш е условиях в этой центральной пр едельной теореме имеет место т акже и сходимостьr-ых абсолютных моментов, т.е. если σ n 2 →∞ приn→ ∞, то $$\mathop {\lim }\limits_{n \to \infty } E|S_n /\sigma _n |^r = (2\pi )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \mathop \smallint \limits_{ - \infty }^{ + \infty } |u|^r e^{ - u^2 /2} du.$$ Этот результат обобщ ает один более ранний результат автора (1980 г.).  相似文献   

13.
Let (T t ) t?≥ 0 be a bounded analytic semigroup on L p (Ω), with 1?<?p?<?∞. Let ?A denote its infinitesimal generator. It is known that if A and A * both satisfy square function estimates ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{\frac{1}{2}} T_t(x)\vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^p} \lesssim \|x\|_{L^p}}$ and ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{*\frac{1}{2}} T_t^*(y) \vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^{p^\prime}} \lesssim \|y\|_{L^{p^\prime}}}$ for ${x\in L^p(\Omega)}$ and ${y\in L^{p^\prime}(\Omega)}$ , then A admits a bounded ${H^{\infty}(\Sigma_\theta)}$ functional calculus for any ${\theta>\frac{\pi}{2}}$ . We show that this actually holds true for some ${\theta<\frac{\pi}{2}}$ .  相似文献   

14.
В НАстОьЩЕЕ ВРЕМь ИжВ ЕстНО МНОгО УтВЕРжДЕ НИИ тИпА тЕОРЕМ ВлОжЕНИь, кОтО РыЕ ФОР-МУлИРУУтсь В тЕРМИНАх МОДУлЕИ НЕ пРЕРыВНОстИ. ДАННАь РАБОтА сОДЕРж Ит НЕскОлькО тЕОРЕМ В лОжЕНИь с УслОВИьМИ, ВыРАжЕННы МИ В тЕРМИНАх НАИлУЧшИх п РИБлИжЕНИИE n(?,p) ФУНкц ИИ ? тРИгОНОМЕтРИЧЕскИМ И пОлИНОМАМИ пОРьДкАn В МЕтРИкЕL p: И сслЕДУЕтсь ВлОжЕНИЕ клАссАE(α,p) ФУНкцИИ ИжL p, УДОВлЕтВОРьУ-ЩИх Дль жАДАННОИ МОНОтОН НО УБыВАУЩЕИ к НУлУ пОслЕДОВАтЕльНОстИ α={Аn} УслОВИУ $$E_n (f,p) \leqq M\alpha _n (M = M(f))< \infty ;n = 1,2,...).$$ хАРАктЕРНыМИ РЕжУль тАтАМИ РАБОты ьВльУт сь слЕДУУЩИЕ ДВА слЕДстВИь тЕОРЕМ ы 3. слЕДстВИЕ 1. пУстьР≧1И Β>?1.ЕслИ пОслЕДОВАтЕльНОстьn} УДОВлЕтВОРьЕт УслОВИУ: , тО Дль ВлОжЕНИь $$E(\alpha ,p) \subset L^p (\ln + L)^{\beta + 1} $$ НЕОБхОДИМО И ДОстАтОЧНО $$\mathop \sum \limits_{n = 2}^\infty \frac{{(\ln n)\beta }}{n}\alpha _n^p< \infty .$$ слЕДстВИЕ 2.ЕслИ v>p≧1,Β≧0 И {Аn} УДОВлЕтВОРьЕт УслОВИУ (1),тО Дль ВлОжЕ НИь $$E(\alpha ,p) \subset L^\nu (\ln + L)^\beta $$ НЕОБхОДИМО И ДОстАтО ЧНО $$\mathop \sum \limits_{n = 2}^\infty n^{\nu /p - 2} (\ln + n)^\beta \alpha _n^\nu< \infty ,$$   相似文献   

15.
Получены асимптотич еские равенства для в еличин гдеr≧0 — целое, ω(t) — выпу клый модуль непрерыв ности и $$\bar \sigma _n (f;x) = - \frac{1}{\pi } \mathop \smallint \limits_{ - \pi }^\pi f(x + t)\left( {\frac{1}{2}ctg\frac{t}{2} - \frac{1}{{4(n + 1)}}\frac{{\sin (n + 1)t}}{{\sin ^2 \tfrac{1}{2}t}}} \right)dt$$ сумма Фейера функцииf(х), сопряженной сf(x).  相似文献   

16.
Let ${\mathcal L(r) = \sum_{n=0}^\infty a_nr^{\lambda_n}}$ be a lacunary series converging for 0 <  r < 1, with coefficients in a quasinormed space. It is proved that $$\int_0^1 F(1-r,\|\mathcal L(r)\|)(1-r)^{-1}\,{\rm d}r < \infty $$ if and only if $$ \sum_{n=0}^\infty F(1/\lambda_n,\|a_n\|) < \infty, $$ where F is a “normal function” of two variables. In the case when p ≥ 1 and F(x, y) =  x y p , this reduces to a theorem of Gurariy and Matsaev. As an application we prove that if ${f(r\zeta) = \sum_{n=0}^\infty r^{\lambda_n}f_{\lambda_n}(\zeta)}$ is a function harmonic in the unit ball of ${\mathbb R^N,}$ then $$\int_0^1M_p^q(r,f)(1-r)^{q\alpha-1} \,{\rm d}r <\infty\quad (p,\,q,\,\alpha >0 ) $$ if and only if $$\sum_{n=0}^\infty \|f_{\lambda_n} \|^q_{L^p(\partial B_N)}(1/\lambda_n)^{q\alpha} <\infty. $$   相似文献   

17.
Let ${\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)}$ with the non-negative potential V belonging to reverse H?lder class with respect to the measure ??(x)dx, where ??(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying ${\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. }$ We obtain some estimates for ${V^{\alpha}\mathcal{L}^{-\alpha}}$ on the weighted L p spaces and we study the weighted L p boundedness of the commutator ${[b, V^{\alpha} \mathcal{L}^{-\alpha}]}$ when ${b\in BMO_\omega}$ and 0?<??? ?? 1.  相似文献   

18.
In this paper, we discuss the existence of solutions for irregular boundary value problems of nonlinear fractional differential equations with p-Laplacian operator $$\left \{ \begin{array}{l} {\phi}_p(^cD_{0+}^{\alpha}u(t))=f(t,u(t),u'(t)), \quad 0< t<1, \ 1< \alpha \leq2, \\ u(0)+(-1)^{\theta}u'(0)+bu(1)=\lambda, \qquad u(1)+(-1)^{\theta}u'(1)=\int_0^1g(s,u(s))ds,\\ \quad \theta=0,1, \ b \neq \pm1, \end{array} \right . $$ where \(^{c}D_{0+}^{\alpha}\) is the Caputo fractional derivative, ? p (s)=|s| p?2 s, p>1, \({\phi}_{p}^{-1}={\phi}_{q}\) , \(\frac {1}{p}+\frac{1}{q}=1\) and \(f: [0,1] \times\mathbb{R} \times\mathbb {R} \longrightarrow\mathbb{R}\) . Our results are based on the Schauder and Banach fixed point theorems. Furthermore, two examples are also given to illustrate the results.  相似文献   

19.
Оператор Канторович а дляf∈L p(I), I=[0,1], определяе тся соотношением $$P_n (f,x) = (n + 1)\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} x^k (1 - x)^{n - 1} \int\limits_{I_k } {f(t)dt,} $$ гдеI k=[k/(n}+1),(k+1)/(n+ 1)],n∈N. Доказывается, что есл ир>1 иfW p 2 (I), т.е.f абсол ютно непрерывна наI иf″∈L p(I), то $$\left\| {P_n f - f} \right\|_p = O(n^{ - 1} ).$$ Далее, установлено, чт о еслиfL p(I),p>1 и ∥P n f-fр=О(n ?1), тоf∈S, гдеS={ff аб-солютно непрерывна наI, x(1?x)f′(x)=∝ 0 x h(t)dt, гдеh∈L p(I) и ∝ 0 1 h(t)dt=0}. Если жеf∈Lp(I),p>1, то из условия ∥P n(f)?fpL=o(n?1) вытекает, чтоf постоянна почти всюду.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号