首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV radiation (280–400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320–400 nm) or UV-A + UV-B (295–400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B + UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 W m?2, DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.  相似文献   

2.
Phytoplanktonic species acclimated to high light are known to show less photoinhibition. However, little has been documented on how cells grown under indoor conditions for decades without exposure to UV radiation (UVR, 280-400 nm) would respond differently to solar UVR compared to those in situ grown under natural solar radiation. Here, we have shown the comparative photosynthetic and growth responses to solar UVR in an indoor- (IS) and a naturally grown (WS) Skeletonema costatum type. In short-term experiment (<1 day), Phi(PSII) and photosynthetic carbon fixation rate were more inhibited by UVR in the IS than in the WS cells. The rate of UVR-induced damages of PSII was faster and their repair was significantly slower in IS than in WS. Even under changing solar radiation simulated for vertical mixing, solar UVR-induced higher inhibition of photosynthetic rate in IS than in WS cells. During long-term (10 days) exposures to solar radiation, the specific growth rate was much lower in IS than WS at the beginning, then increased 3 days later to reach an equivalent level as that of WS. UVR-induced inhibition of photosynthetic carbon fixation in the IS was identical with that of WS at the end of the long-term exposure. The photosynthetic acclimation was not accompanied with increased contents of UV-absorbing compounds, indicating that repair processes for UVR-induced damages must have been accelerated or upgraded.  相似文献   

3.
Patagonia area is located in close proximity to the Antarctic ozone "hole" and thus receives enhanced ultraviolet B (UV-B) radiation (280-315 nm) in addition to the normal levels of ultraviolet A (UV-A; 315-400 nm) and photosynthetically available radiation (PAR; 400-700 nm). In marine ecosystems of Patagonia, normal ultraviolet radiation (UVR) levels affect phytoplankton assemblages during the three phases of the annual succession: (1) prebloom season (late summer-fall), (2) bloom season (winter-early spring) and (3) postbloom season (late spring-summer). Small-size cells characterize the pre- and postbloom communities, which have a relatively high photosynthetic inhibition because of high UVR levels during those seasons. During the bloom, characterized by microplankton diatoms, photosynthetic inhibition is low because of the low UVR levels reaching the earth's surface during winter; this community, however, is more sensitive to UV-B when inhibition is normalized by irradiance (i.e. biological weighting functions). In situ studies have shown that UVR significantly affects not only photosynthesis but also the DNA molecule, but these negative effects are rapidly reduced in the water column because of the differential attenuation of solar radiation. UVR also affects photosynthesis versus irradiance (P vs E) parameters of some natural phytoplankton assemblages (i.e. during the pre- but not during the postbloom season). However, there is a significant temporal variability of P vs E parameters, which are influenced by the nutrient status of cells and taxonomic composition; taxonomic composition is in turn associated with the stratification conditions (e.g. wind speed and duration). In Patagonia, wind speed is one of the most important variables that conditions the development of the winter bloom by regulating the depth of the upper mixed layer (UML) and hence the mean irradiance received by cells. Studies on the interactive effects of UVR and mixing show that responses of phytoplankton vary according to the taxonomic composition and cell structure of assemblages; therefore cells use UVR if >90% of the euphotic zone is being mixed. In fact, cell size plays a very important role when estimating the impact of UVR on phytoplankton, with large cells being more sensitive when determining photosynthesis inhibition, whereas small cells are more sensitive to DNA damage. Finally, in long-term experiments, it was determined that UVR can shape the diatom community structure in some assemblages of coastal waters, but it is virtually unknown how these changes affect the trophodynamics of marine systems. Future studies should consider the combined effects of UVR on both phytoplankton and grazers to establish potential changes in biodiversity of the area.  相似文献   

4.
Two new stereoisomers of laurane-derived brominated sesquiterpenes, 4-bromolaur-11-en-1,10alpha-diol (1) and 4-bromolaur-11-en-1,10beta-diol (2), one new natural product, laur-11-en-1,10alpha-diol (3), together with 11 known compounds (4-14) were isolated and identified from the organic extract of the marine red alga Laurencia tristicha. Their structures and relative stereochemistry were established by analysis of mass and NMR spectroscopic techniques.  相似文献   

5.
6.
Alkaline flooding is a method of enhanced oil recovery that relies on the formation of surface-active substances in situ by a chemical reaction between acidic components in the oil and an alkaline reagent. As the injected alkali advances through the porous medium, it keeps contacting fresh oil. At some moment dependent on the alkali/acid concentrations and the velocity, the alkali at the advancing front may become depleted and the flood becomes interfacially nonreactive. The present study is aimed at investigating the above-mentioned phenomena. Displacement studies were conducted in radial cells containing sintered glass beads as a porous medium. Light paraffin oil acidified with 10 mmol/L of linoleic acid served as the displaced (oil) phase while the displacing aqueous solution contained 0-25 mmol/L of sodium hydroxide. The highest oil recovery was obtained under the conditions of low flow rate and high alkali concentration. Increasing the flow rate at high NaOH concentration resulted in decreasing oil recovery up to a certain threshold flow rate. Conversely, the amount of oil recovered by waterflooding only (no alkali) initially increased with increasing flow rate up to the same threshold flow rate beyond which there was no difference between the alkaline flood and a waterflood. Copyright 2000 Academic Press.  相似文献   

7.
A study to quantify the UV exposure of vineyard workers was carried out using polysulphone dosimetry. The study took place in Tuscany (Italy) involving 32 vineyard workers, covering three different stages of the vine's growth. The level of personal exposure expressed as a function on the available ambient UV radiation was determined. We also assessed skin reflectance parameters, pre and post exposure. It was found that during spring backs received between 53% and 87% of ambient exposure and arms between 30% and 60%. During summer, the workers received on the back between 36% and 77% of ambient exposure and between 19% and 43% of ambient exposure on the arm. The comparison with the occupational UV exposure limit showed that all subjects received UV exposures in excess of the limit. The exposure of back of neck exceeded 10 SED (assumed as a threshold level of sun-adapted skin for Mediterranean subjects) in spring, which means that in the case of non sun-adapted skin and without sun protection, erythema can be induced in this targeted population. The cumulative exposure was also estimated under specific assumptions of UV exposure giving values in some cases higher than previous studies.  相似文献   

8.
Experiments (6-8 days) were carried out during the austral summer of 2005 in Chubut, Argentina (43 degrees S, 65 degrees W) to determine the interactive effects of solar UVR (280-400 nm) and nutrient addition on growth and chlorophyll fluorescence of four species of marine phytoplankton--the diatoms Thalassiosira fluviatilis Hustedt and Chaetoceros gracilis Schütt, and the dinoflagellates Heterocapsa triquetra (Ehrenberg) Stein and Prorocentrum micans (Ehrenberg). Samples were incubated under three radiation treatments (two sets of each radiation treatment): (a) samples exposed to full solar radiation (PAR+UVR, PAB treatment, 280-700 nm); (b) samples exposed to PAR and UV-A (PA treatment, 320-700 nm) and (c) samples exposed only to PAR (P treatment, 400-700 nm). At the beginning of the experiments, nutrients (i.e., NaPO(4)H(2) and NaNO(3)) were added to one set of samples from each radiation treatment ("N" cultures) whereas in the other, the nutrients concentration was that of the culture medium. At all times, the lowest growth rates (mu) were determined in the PAB treatments, where enriched cultures had significantly higher mu (P<0.05) than non-enriched cultures. Daily cycles of photochemical quantum yield (Y) displayed a pattern of relatively high values early in the morning with a sharp decrease at noon; recovery was observed late in the afternoon. In general, higher Y values were determined in enriched cultures than in non-enriched cultures. As the experiments progressed, acclimation (estimated as the difference between Y at noon and that at time zero) was observed in all species although in variable degree. All species displayed some degree of UVR-induced decrease in the photochemical quantum yield, although it was variable among treatments and species. However, this effect decreased with time, and this pattern was more evident in the dinoflagellates, as the concentration of UV-absorbing compounds increased. Thus, under conditions of nutrient enrichment as may occur by river input or by re-suspension by mixing, dinoflagellates outcompete with diatoms because they may have a higher fitness under UVR stress.  相似文献   

9.
The effects of ultraviolet radiation on dilute aqueous solutions of poly(acrylic acid) and of other polyelectrolytes were studied by viscosity measurements in connection with the effects of ionizing radiation. It was found that ultraviolet light of wavelength below about 2300 Å brought about degradation of polymer chains mainly by indirect action via water, while light of wavelength above 2300 Å caused degradation by direct action in some polymers. It was deduced from the experiments that the protective effect of NaCl could be largely attributed to a decrease in the indirect action. It was also found that a low concentration of methanol was effective in preventing degradation by direct action, although methanol promoted degradation when present in high concentration. Since the promotive effect was not observed when light of wavelength below 3700 Å was eliminated by a filter, this effect was attributed to active products of the irradiation of methanol.  相似文献   

10.
Penetration of ultraviolet radiation in the marine environment. A review   总被引:1,自引:0,他引:1  
UV radiation (UVR) is a significant ecological factor in the marine environment that can have important effects on planktonic organisms and dissolved organic matter (DOM). The penetration of UVR into the water column is likely to change in the near future due to interactions between global warming and ozone depletion. In this study we report underwater instruments employed for the measurement of UVR and we review data dealing with the depth of UVR penetration in different oceanic areas including the open ocean, Antarctic waters and coastal waters. We provide the 10% irradiance depth (Z10%) for UV-A and UV-B as well as for DNA damage effective dose (DNA), which we calculated from the values of diffuse attenuation coefficients or vertical profiles reported in the literature. We observe a clear distinction between open ocean (high Z10%, no variation in the ratio UV-B/UV-A), Antarctic waters (increase in the ratio UV-B/UV-A during ozone hole conditions) and coastal waters (low Z10%, no variation in the ratio UV-B/UV-A). These variations in the penetration of UVR could lead to differences in the relative importance of photobiological/photochemical processes. We also compare in this study the penetration of UV-B (unweighted and weighted by the Setlow action spectrum) and DNA damage effective dose.  相似文献   

11.
The effects of ultraviolet radiation (UV-A, 315-400 nm plus UV-B, 280-315 nm) on photosynthesis and 'light-enhanced dark respiration' (LEDR) in Euglena gracilis have been investigated by using light pulses (80 s) with increasing photon fluence rates of 59, 163, 600, 1180, 2080 and 3340 micromol m(-2) s(-1) and dark periods between the light pulses. LEDR is estimated as the maximum rate of oxygen consumption after a period of light minus the rate of oxygen consumption 30 s after the maximum rate. Without any exposure to UV radiation, the photosynthetic rate and LEDR increase with increasing photon fluence rate. After 20 and 40 min exposures to UV radiation, the photosynthetic rate and LEDR as functions of photon fluence rate are reduced. After a 20 min UV treatment respiration is greater than photosynthesis after the first light pulse of 59 micromol m(-2) s(-1) radiation, and especially at higher photon fluence rates photosynthesis is lower than the control values. The inhibitory effects of UV radiation on photosynthetic rate and LEDR are greater after a 40 min UV exposure than after a 20 min exposure. Only at 600 micromol m(-2) s(-1) is the rate of oxygen evolution greater than that of oxygen consumption after a 40 min UV treatment. Both photosynthetic rate and LEDR are inhibited by the photosynthetic inhibitor DCMU (10(-5) M) in a similar way, which indicates close regulatory interactions between photosynthesis and LEDR. Potassium cyanide (KCN) inhibits dark respiration more than it inhibits LEDR. Dark respiration is not affected to the same degree by UV radiation as are photosynthesis and LEDR.  相似文献   

12.
Matrix metalloproteinases (MMPs), a key component in photoaging of the skin due to exposure to ultraviolet A, appear to be increased by UV-irradiation-associated generation of reactive oxygen species (ROS). In this study, the alga Corallina pilulifera methanol (CPM) extract has been shown to exert a potent antioxidant activity and protective effect on UVA-induced oxidative stress of human dermal fibroblast (HDF) cell. Antioxidant evaluated by various antioxidant assays. These include reducing power, total antioxidant, DPPH radical scavenging, hydroxyl radical scavenging and protective effect on DNA damage caused by hydroxyl radicals generated. Further, the ROS level was detected using a fluorescence probe, 2′,7′-dichlorofluorescein diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with the presence of intracellular ROS on HT-1080 cells. Those various antioxidant activities were compared to standard antioxidants such as α-tocopherol. In addition, the in vitro activities of MMP-2 and MMP-9 in HDF cell were inhibited by C. pilulifera methanol extract dose dependently by using gelatin zymography method. The results obtained in the present study suggested that the C. pilulifera methanol extract may be a potential source of natural anti-photoaging.  相似文献   

13.
Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille   总被引:3,自引:0,他引:3  
Aplanospores of Chlamydomonas nivalis are frequently found in high-altitude, persistent snowfields where they are photosynthetically active despite cold temperatures and high levels of visible and ultraviolet (UV) radiation. The goals of this work were to characterize the UV environment of the cells in the snow and to investigate the existence and localization of screening compounds that might prevent UV damage. UV irradiance decreased precipitously in snow, with UV radiation of wavelengths 280-315 nm and UV radiation of wavelengths 315-400 nm dropping to 50% of incident levels in the top 1 and 2 cm, respectively. Isolated cell walls exhibited UV absorbance, possibly by sporopollenin, but this absorbance was weak in images of broken or plasmolyzed cells observed through a UV microscope. The cells also contained UV-absorbing cytoplasmic compounds, with the extrachloroplastic carotenoid astaxanthin providing most of the screening. Additional screening compound(s) soluble in aqueous methanol with an absorption maximum at 335 nm played a minor role. Thus, cells are protected against potentially high levels of UV radiation by the snow itself when they live several centimeters beneath the surface, and they rely on cellular screening compounds, chiefly astaxanthin, when located near the surface where UV fluxes are high.  相似文献   

14.
A linker-contained R-phycoerythrin (R-PE) complex was obtained by the Sephadex G-150 column chromatography from the Polysiphonia urceolata phycobilisome (PBS) that was dis-associated at 37 degrees C for 6 h in the dilute phosphate buffer (pH 7.0) with 5% (m/v) sodium dodecyl sulfate (SDS). The R-PE complex showed three absorption peaks at 498, 538 and 567 nm, and a fluorescence emission maximum at 578 nm. Polypeptide analysis of the complex by the 8-25% (m/v) gradient SDS-polyacrylamide gel electrophoresis demonstrated that it contained three red subunits, alpha(PE)(17.6),beta(PE)(19.2) and gamma(PE)(31.0), and a colorless 35.3 kDa rod-linker L(R)(35.3). Polypeptide proportion of the complex demonstrated that it was a hexamer in aggregate form gamma(PE)(31.6), (alpha(PE)(17.6),beta(PE)(19.2))(3)L(R)(35.3)(alpha(PE)(17.6),beta(PE)(19.2)(3)gamma(PE)(31.6) which is proposed to originate from a rod assembly of hexamer-linker-hexamer the substructure alpha(PE)(17.6),beta(PE)(19.2)(3) of which was decomposed off from the ends of the assembly during the PBS dissociation. The distinctive stability of the prepared hexamer is attributed to a large extent to the electrostatic interaction among its polypeptides, but not to the hydrophobic interaction.  相似文献   

15.
Experiments (6-8 days) were conducted during late summer, late fall and late winter, 2003 with waters collected off Bahía Nueva, Chubut, Argentina (42.7 degrees S, 65 degrees W) to determine the combined effects of solar ultraviolet radiation (UVR, 280-400 nm) and nutrient addition on phytoplankton communities. Samples were put in UVR-transparent containers and incubated under two radiation treatments: (a) Samples exposed to full solar radiation (PAB treatment, 280-400 nm) and (b) Samples exposed only to PAR (PAR treatment, 400-700 nm). At the beginning of the experiments, nutrients (i.e., NaPO(4)H(2) and NaNO(3)) were added to one set of samples from each radiation treatment (N cultures) whereas in the other set, nutrients remained at the concentration of the seawater. Chlorophyll a, biomass, UV-absorbing compounds and taxonomic composition were recorded throughout the experiments. N cultures always had significantly higher growth rates (P<0.05) than that in non-enriched cultures. At the beginning of experiments, phytoplankton communities were generally dominated by monads and flagellates but by the end, diatoms comprised the bulk of biomass, with only one to four taxa dominating, suggesting a selection towards more tolerant/less sensitive species. Over the experimental time frame, the observed taxonomic changes were mostly due to nutrient availability, and to a lesser extent to solar UVR exposure. Overall, the results indicate that environmental conditions (i.e., light history, nutrient concentration) together with the physiological status of the cells play a very important role at the time to assess the combined effect of nutrient addition and solar radiation on coastal phytoplankton assemblages from Patagonia.  相似文献   

16.
On UV irradiation of the skin, a complex cascade of immunological changes results, initiated by cutaneous chromophores and ending in suppression of some local and systemic immune responses. In this review, the stages in this process are outlined first, concentrating on the roles of DNA and urocanic acid as photoreceptors. Evidence indicating UV-induced immunomodulation of delayed hypersensitivity and resistance to infectious diseases in human subjects follows. Aspects of genetic susceptibility to the immunosuppressive effects of UV exposure and extrapolation of the data obtained in animal models to the human situation are included. Finally uncertain and unknown factors relating to the impact of UV on the human immune system are discussed.  相似文献   

17.
18.
Effects of solar radiation on collagen and chitosan films   总被引:3,自引:0,他引:3  
Photo-aging and photo-degradation are the deleterious effect of chronic exposure to sun light of many materials made of natural polymers. The resistance of the products on the action of solar radiation is very important for material scientists. The effect of solar radiation on two natural polymers: collagen and chitosan as well as collagen/chitosan blends in the form of thin films has been studied by UV-Vis and FTIR spectroscopy. It was found that UV-Vis spectra, which characterise collagen and collagen/chitosan films, were significantly altered by solar radiation. FTIR spectra of collagen and collagen/chitosan films showed that after solar irradiation the positions of amide A and amide I bands were shifted to lower wavenumbers. There was not any significant alteration of chitosan UV-Vis and FTIR spectra after solar radiation. In the condition of the experiment chitosan films were resistant to the action of solar radiation. The effect of solar UV radiation in comparison to artificial UV radiation has been discussed.  相似文献   

19.
Because of its accessibility the human skin is constantly exposed to solar ultraviolet (UV) radiation. It is increasingly appreciated that exposure of the mammalian skin to UV plays a causal and decisive role in acute and chronic skin damage including the development of skin cancer. UV exposure causes sunburn, pigmentation, hyperplasia, immunosuppression, DNA damage, photoaging and photocarcinogenesis. To cope with constant environmental damage the skin possesses elaborate enzymatic detoxification systems. This paper briefly focuses on the effect of solar radiation, particularly UV spectrum, on detoxification pathways in the skin. Specifically the effect of solar radiation on cytochrome P450, glutathione, superoxide dismutase, glutathione peroxidase, catalase, glutathione-S-transferase and ceruloplasmin has been discussed.  相似文献   

20.
M.D. Higgs 《Tetrahedron》1981,37(24):4255-4258
Two unstable antimicrobial metabolites have been isolated from aqueous methanolic extracts of fresh samples of the red alga Laurencia hybrida. The molecules have been identified as 11-formyl-undeca-5(Z), 8(E), 10(E)-trienoic acid and 9-hydroxyeicosa-2(Z), 5(Z), 7(E), 11(Z), 14(Z)-pentaenoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号