首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

2.
Taking advantage of the fact that TiO2 additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO2 give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y2(Ti1−yZry)2O7 pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and higher additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO2 content. Furthermore, zirconium titanate phase (ZrTiO4) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y2O3 in solid solution according to FE-SEM-EDX.The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO2 range from 0.21 to 10−7.5 atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 °C and 10−12.3 atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a −1/4 pO2 dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti3+ and Ti4+.  相似文献   

3.
Hydrothermal synthesis in the M/Mo/O (M=Co,Ni) system was investigated. Novel transition metal tetramolybdate dihydrates MMo4O13·2H2O (M=Co,Ni), having an interesting pillared layer structure, were found. The molybdates crystallize in the triclinic system with space group P−1, Z=1 with unit cell parameters of a=5.525(3) Å, b=7.058(4) Å, c=7.551(5) Å, α=90.019(10)°, β=105.230(10)°, γ=90.286(10)° for CoMo4O13·2H2O, and a=5.508(2) Å, b=7.017(3) Å, c=7.533(3) Å, α=90.152(6)°, β=105.216(6)°, γ=90.161(6)° for NiMo4O13·2H2O The structure is composed of two-dimensional molybdenum-oxide (2D Mo-O) sheets pillared with CoO6 octahedra. The 2D Mo-O sheet is made up of infinite straight ribbons built up by corner-sharing of four molybdenum octahedra (two MoO6 and two MoO5OH2) sharing edges. These infinite ribbons are similar to the straight ones in triclinic-K2Mo4O13 having 1D chain structure, but are linked one after another by corner-sharing to form a 2D sheet structure, like the twisted ribbons in BaMo4O13·2H2O (or in orthorhombic-K2Mo4O13) are.  相似文献   

4.
The Na-based osmium oxide pyrochlore was synthesized for the first time by an ion-exchange method using KOs2O6 as a host. The composition was identified as Na1.4Os2O6·H2O by electron probe micro-analysis, thermogravimetric analysis, and structural analysis using synchrotron X-ray diffraction. Na1.4Os2O6·H2O crystallizes in a regular pyrochlore structure with some defects (space group: Fd-3m, a=10.16851(1) Å). Electrical resistivity, heat capacity, and magnetization measurements clearly showed absence of superconductivity down to 2 K, being in large contrast to what was found for the β-type pyrochlore superconductor AOs2O6 (A=Cs, Rb, and K). The Sommerfeld coefficient is 22 mJ K−2 mol−1, being the smallest among AOs2O6. A magnetic anomaly at ∼57 K and associated magneto-resistance (+3.7% at 2 K in 70 kOe) were found.  相似文献   

5.
Gui-Fen Jie 《Talanta》2007,71(4):1476-1480
Electrogenerated chemiluminescence (ECL) of CdS nanotubes in aqueous solution and its sensing application were studied by entrapping the CdS nanotubes in carbon paste electrode. Two ECL peaks were observed at −0.9 V (ECL-1) and −1.2 V (ECL-2), respectively, when the potential was cycled between 0 and −1.6 V. The electrochemically reduced nanocrystal species of CdS nanotubes could collide with the oxidized species in an annihilation process to produce the peak of ECL-1. The electron-transfer reaction between the reduced CdS nanocrystal species and oxidant coreactants such as S2O82−, H2O2, and reduced dissolved oxygen led to the appearance of the ECL-2 peak. Based on the enhancing effect of H2O2 on ECL-2 intensity, a novel CdS ECL sensor was developed for H2O2 detection. The sensor exhibited a detection limit of 0.1 μM and a linear range from 0.5 μM to 0.01 mM. The relative standard deviations of five replicate determinations of 5 μM H2O2 was 2.6%. In addition, the ECL spectrum in aqueous solution also exhibited two peaks at 500 and 640 nm, respectively.  相似文献   

6.
Hydrogen peroxide (H2O2) in exhaled breath condensate (EBC) has been proposed as a marker for oxidative stress in the airways. The aim of the present study was to evaluate the measurement of H2O2 in EBC with or without use of a nose clip, and the influence of mouth rinsing, sampling time and storage.An elevated H2O2 level was seen during nasal breathing compared to mouth breathing with nose clip (3.4 pmol/s vs. 2.1 pmol/s, p = 0.02). Breathing through the mouth, using a nose clip, was therefore practiced in all experiments. The H2O2 levels were increased when mouth rinsing was performed using an acid buffer (1.4 pmol/s vs. 1.9 pmol/s, p = 0.03). 15 min sampling time decreased the H2O2 output by almost 50% compared with 2 min sampling time (1.2 vs. 0.6 pmol/s, p = 0.03). When samples were left unattended for 15 min no change in H2O2 concentration in the EBC was seen.We found no significant differences in H2O2 levels between samples stored for 4 weeks at − 80 °C and samples analysed directly; however, a significant decrease in the levels was seen for samples stored for 4 weeks at − 20 °C.In conclusion, the method of EBC collection and storage plays an important role in reducing variability within and between individuals.  相似文献   

7.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

8.
Gao Y  Wang G  Huang H  Hu J  Shah SM  Su X 《Talanta》2011,85(2):1075-1080
In this paper, we utilized the instinct peroxidase-like property of Fe3O4 magnetic nanoparticles (MNPs) to establish a new fluorometric method for determination of hydrogen peroxide and glucose. In the presence of Fe3O4 MNPs as peroxidase mimetic catalyst, H2O2 was decomposed into radical that could quench the fluorescence of CdTe QDs more efficiently and rapidly. Then the oxidization of glucose by glucose oxidase was coupled with the fluorescence quenching of CdTe QDs by H2O2 producer with Fe3O4 MNPs catalyst, which can be used to detect glucose. Under the optimal reaction conditions, a linear correlation was established between fluorescence intensity ratio I0/I and concentration of H2O2 from 1.8 × 10−7 to 9 × 10−4 mol/L with a detection limit of 1.8 × 10−8 mol/L. And a linear correlation was established between fluorescence intensity ratio I0/I and concentration of glucose from 1.6 × 10−6 to 1.6 × 10−4 mol/L with a detection limit of 1.0 × 10−6 mol/L. The proposed method was applied to the determination of glucose in human serum samples with satisfactory results.  相似文献   

9.
Serge Zhuiykov  Eugene Kats 《Talanta》2010,82(2):502-5442
A Cu2O-doped RuO2 sensing electrode (SE) for potentiometric detection of dissolved oxygen (DO) was prepared and its structure and electrochemical properties were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS) and energy-dispersive spectroscopy (EDS) techniques. Cu2O-RuO2-SE displayed a linear DO response from 0.5 to 8.0 ppm (log[O2], −4.73 to −3.59) within a temperature range of 9-30 °C. The maximum sensitivity of −47.4 mV/decade at 7.27 pH was achieved at 10 mol% Cu2O. Experimental evaluation of the Cu2O-doped RuO2-SE demonstrated that the doping of RuO2 not only improves its structure but also enhances both sensor's selectivity and antifouling properties. Selectivity measurements revealed that 10 mol% Cu2O-doped RuO2-SE is insensitive to the presence of Na+, Mg2+, K+, Ca2+, NO3, PO42− and SO42− ions in the solution in the concentration range of 10−7-10−1 mol/l.  相似文献   

10.
In this paper, LaNi0.6Co0.4O3 (LNC) nanoparticles were synthesized by the sol–gel method, and the structure and morphology of LNC nanoparticles were characterized by X-ray diffraction spectrum, scanning electron microscopy and transmitting electron microscopy. And then, LNC was used to modify carbon paste electrode (CPE) without any adhesive to fabricate hydrogen peroxide and glucose sensor, and the results demonstrated that LNC exhibited strong electrocatalytical activity by cyclic voltammetry and amperometry. In H2O2 determination, linear response was obtained in the concentration range of 10 nM–100 μM with a detection limit of 1.0 nM. In glucose determination, there was the linear region of 0.05–200 μM with a detection limit of 8.0 nM. Compared with other reports, the proposed sensor also displayed high sensitivity toward H2O2 (1812.84 μA mM−1 cm−2) and glucose (643.0 μA mM−1 cm−2). Moreover, this prepared sensor was applied to detect glucose in blood serum and hydrogen peroxide in toothpaste samples with satisfied results, indicating its possibility in practical application.  相似文献   

11.
Graphene-CdS (G-CdS) nanocomposites were successfully prepared by CdS nanocrystals (CdS NCs) formed in situ on the surface of graphene sheets, using graphene oxide (GO) sheets with rich negatively charged carboxylic acid groups as starting materials. Compared with pure CdS NCs, the presence of the graphene doped in G-CdS nanocomposites could facilitate the electrochemical redox process of CdS NCs; further, the as-prepared G-CdS nanocomposite can react with H2O2 to generate strong and stable electrochemiluminescent (ECL) emission, which not only enhances its ECL intensity by about 4.3-fold but also decreases its onset potential for about 320 mV. The as-prepared solid-state ECL H2O2 sensor shows acceptable linear response from 5 μM up to 1 mM with a detection limit of 1.7 μM (S/N = 3). The ECL H2O2 sensor exhibits excellent reproducibility and long-term stability. Such a property would promote the potential application of the graphene as enhanced materials in fabricating sensors for chemical and biochemical analysis.  相似文献   

12.
A nitrite sensor based on immobilized Dawson-type tungstophosphate α-K7[H4PW18O62]·18H2O (PW18) in multilayers of charged polyelectrolyte poly(allylamine hydrochloride) (PAH) on a glassy carbon electrode is described. A nitrite sensor manufactured with 10 layers has a sensitivity of ∼4 nA/μM nitrite, fast response time (<6 s), low detection limit (∼0.1 μM), high selectivity towards endogenous interferences such as nitrate and molecular oxygen, a linear range from 0.1 μM to at least 20 mM nitrite and was stable for at least 2 months. In addition, such nitrite sensors can operate in a pH range from 1 to 9, and the sensitivity can be increased by increasing the number of layers at the expense of increasing the response time.  相似文献   

13.
The enthalpies of solution of Cs2Ca[B4O5(OH)4]2·8H2O(s) in approximately 1 mol dm−3 aqueous hydrochloric acid and of CsCl(s) in aqueous (hydrochloric acid + boric acid + calcium oxide) were determined. From these results and the enthalpies of solution of H3BO3(s) in approximately 1 mol dm−3 HCl(aq) and of CaO(s) in aqueous (hydrochloric acid + boric acid), the standard molar enthalpy of formation of −(10328 ± 6) kJ mol−1 for Cs2Ca[B4O5(OH)4]2·8H2O(s) was obtained from the standard molar enthalpy of formation of CaO(s), CsCl(s), H3BO3(s) and H2O(l). The standard molar entropy of formation of Cs2Ca[B4O5(OH)4]2·8H2O(s) was calculated from the thermodynamic relation with the standard molar Gibbs free energy of formation of Cs2Ca[B4O5(OH)4]2·8H2O(s) computed from a group contribution method.  相似文献   

14.
The enthalpies of solution of NaRb[B4O5(OH)4]·4H2O in approximately 1 mol dm−3 aqueous hydrochloric acid and of RbCl in aqueous (hydrochloric acid + boric acid + sodium chloride) were determined. From these results and the enthalpy of solution of H3BO3 in approximately 1 mol dm−3 HCl(aq) and of sodium chloride in aqueous (hydrochloric acid + boric acid), the standard molar enthalpy of formation of −(5128.02 ± 1.94) kJ mol−1 for NaRb[B4O5(OH)4]·4H2O was obtained from the standard molar enthalpies of formation of NaCl(s), RbCl(s), H3BO3(s) and H2O(l). The standard molar entropy of formation of NaRb[B4O5(OH)4]·4H2O was calculated from the Gibbs free energy of formation of NaRb[B4O5(OH)4]·4H2O computed from a group contribution method.  相似文献   

15.
Single crystals of K3RESi2O7 (RE=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were grown from a potassium fluoride flux. Two different structure types were found for this series. Silicates containing the larger rare earths, RE=Gd, Tb, Dy, Ho, Er, Tm, Yb crystallize in a structure K3RESi2O7 that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment, while in K3LuSi2O7, containing the smallest of the rare earths, lutetium is found solely in an octahedral coordination environment. The structure of K3LuSi2O7 crystallizes in space group P63/mmc with a=5.71160(10) Å and c=13.8883(6) Å. The structures containing the remaining rare earths crystallize in the space group P63/mcm with the lattice parameters of a=9.9359(2) Å, c=14.4295(4) Å, (K3GdSi2O7); a=9.88730(10) Å, c=14.3856(3) Å, (K3TbSi2O7); a=9.8673(2) Å, c=14.3572(4) Å, (K3DySi2O7); a=9.8408(3) Å, c=14.3206(6) Å, (K3HoSi2O7); a=9.82120(10) Å, c=14.2986(2) Å, (K3ErSi2O7); a=9.80200(10) Å, c=14.2863(4) Å, (K3TmSi2O7); a=9.78190(10) Å, c=14.2401(3) Å, (K3YbSi2O7). The optical properties of the silicates were investigated and K3TbSi2O7 was found to fluoresce in the visible.  相似文献   

16.
The layered LiNi1/3Co1/3Mn1/3O2−zFz (0 ≤ z ≤ 0.12) cathode materials were synthesized from oxalate precursors by a simple self-propagating solid-state metathesis method with the help of the ball milling and the following calcination. Li(Ac)·2H2O, Ni(Ac)2·4H2O, Co(Ac)2·4H2O, Mn(Ac)2·4H2O(Ac = acetate), LiF and excess H2C2O4·2H2O were used as starting materials without any solvent. The structural and electrochemical properties of the prepared LiNi1/3Co1/3Mn1/3O2−zFz were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and electrochemical measurements, respectively. The XRD patterns indicate that all samples have a typical hexagonal structure with a space group of . The FESEM images show that the primary particle size of LiNi1/3Co1/3Mn1/3O2−zFz gradually increases with increasing fluorine content. Though the fluorine-substituted LiNi1/3Co1/3Mn1/3O2−zFz have lower initial discharge capacities, a small amount of fluorine-substituted LiNi1/3Co1/3Mn1/3O2−zFz (z = 0.04 and 0.08) exhibit excellent cycling stability and rate capability compared to fluorine-free LiNi1/3Co1/3Mn1/3O2.  相似文献   

17.
In this study, the reaction conditions of poly-4-[(2-methylphenyl)iminomethyl]phenol (P-2-MPIMP) were studied by using oxidants such as air O2, H2O2 and NaOCl in an aqueous alkaline medium between 50 and 90 °C. The structures of the synthesized monomer and polymer were confirmed by FT-IR, UV-vis, NMR and elemental analysis. The characterization was made by TG-DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly-4-[(2-methylphenyl)iminomethyl]phenol (P-2-MPIMP) was found to be 20% (for air O2 oxidant), 33% (for H2O2 oxidant), and 74% (for NaOCl oxidant). According to the SEC analysis, the number-average molecular weight (Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of P-2-MPIMP were found to be 3300, 4100 g mol−1 and 1.242, using H2O2, and 4550, 5150 g mol−1and 1.132, using air O2 and 5300, 5850 g mol−1 and 1.104, using NaOCl, respectively. According to TG analysis, the weight losses of 4-[(2-methylphenyl)iminomethyl]phenol (2-MPIMP) and P-2-MPIMP were found to be between 75.29% and 48.17% at 1000 °C, respectively. P-2-MPIMP was shown to have a higher stability against thermal decomposition. Also, electrical conductivity of the P-2-MPIMP was measured, showing that the polymer is a typical semiconductor. Electrochemically, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) and electrochemical energy gaps ( of 2-MPIMP and P-2-MPIMP were found to be −6.01, −6.03; −2.63, −2.82; 3.38 and 3.21 eV, respectively. According to UV-vis measurements, the optical band gap (Eg) of 2-MPIMP and P-2-MPIMP was found to be 3.40 and 2.97 eV, respectively.  相似文献   

18.
The N4O3 coordinating heptadentate imidazolidinyl phenolate ligand, H3L (2-(2′-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) forms with Cu(II) a rare aqua bridged complex [{Cu2(μ-L)(μ-H2O)}2](ClO4)2 · 4.5H2O (1 · 4.5H2O). Complex 1 · 4.5H2O contains two crystallographically different but chemically equivalent dinuclear [Cu2(μ-L)(μ-H2O)]+ cationic units in the asymmetric unit. The copper atoms of each dinuclear unit are in a distorted square-pyramidal environment and are held together by phenolate, imidazolidinyl and aqua bridges with a Cu···Cu separation of av. 3.34 Å. The compound exhibits a very weak antiferromagnetic exchange interaction (J = −0.77 cm−1, ? = J?1?2) between the two copper(II) (S = 1/2) ions. The 1H NMR spectrum of the complex shows a total of 17 hyperfine shifted peaks, as expected from the idealized Cs symmetry of the compound, spread over a very large window of chemical shift, spanning about 250 ppm. The complex, having an appropriate intermetallic separation for catechol binding, shows catecholase like activity in MeCN at 25 °C, with the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ).  相似文献   

19.
Yu C  Liu G  Zuo B  Tang Y  Zhang T 《Analytica chimica acta》2008,618(2):204-209
A cataluminescence (CTL) sensor using Al2O3 nanowires as the sensing material was developed for the determination of trace pinacolyl alcohol in air samples based on the catalytic chemiluminescence (CL) of pinacolyl alcohol on Al2O3 nanowires. Eight catalysts were examined and the CL intensity on Al2O3 nanowires prepared by supercritical fluid drying was the strongest. This novel CL sensor showed high sensitivity and selectivity to gaseous pinacolyl alcohol at optimal temperature of 340 °C. Quantitative analysis was performed at a wavelength of 460 nm. The linear range of CTL intensity versus concentration of gaseous pinacolyl alcohol was 0.09 × 10−6 to 2.56 × 10−6 g mL−1 (r = 0.9983, n = 6) with a detection limit (3σ) of 0.0053 × 10−6 g mL−1. None or only very low levels of interference were observed while the foreign substances such as water vapor, ethanol, ammonia, chloroform, benzene, nitrogen dioxide, methylbenzene, hydrochloric acid, methanol and butanol were passing through the sensor. The response time of the sensor is less than 100 s, and the sensor had a long lifetime more than 60 h. The sensor would be potentially applied to analysis of the nerve agents such as Soman.  相似文献   

20.
La0.6Sr1.4MnO4 (LSMO4) layered perovskite with K2NiF4 structure was prepared and evaluated as anode material for La0.8Sr0.2Ga0.83Mg0.17O3 − δ (LSGM) electrolyte supported intermediate temperature solid oxide fuel cells (IT-SOFCs). X-ray diffraction results show that LSMO4 is redox stability. Thermal expansion coefficient of LSMO4 is close to that of LSGM electrolyte. By adopting LSMO4 as anode and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) as cathode, maxium power densities of 146.6, 110.9 mW cm− 2 with H2 fuel at 850, 800 °C and 47.3 mW cm− 2 with CH4 fuel at 800 °C were obtained, respectively. Further, the cell demonstrated a reasonably stable performance under 180 mA cm− 2 for over 40 h with H2 fuel at 800 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号