首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perovskite-type oxides of the series La1−xAxMn1−yByO3 (A = Sr; B = Fe or Co) were prepared by solution combustion synthesis and characterized by X-ray diffraction, specific surface analysis, transmission electron microscopy and field emission scanning electron microscopy techniques. Their activity towards the combustion of methane was evaluated in a temperature programmed combustion microreactor. The LaMn0.9Fe0.1O3 catalyst was found to provide the best performance. The half-conversion temperature of methane over the LaMn0.9Fe0.1O3 catalyst was 398 °C with a W/F = 0.12 g s/cm3 and a methane feed concentration of 0.4 vol% under oxygen excess. Via temperature programmed oxygen desorption (TPD) analysis as well as catalytic combustion runs, the prevalent activity of the LaMn0.9Fe0.1O3 catalyst could be explained by its higher and increased capability to desorb suprafacial, weakly chemisorbed oxygen species. Further catalyst development allowed to maximise the catalytic activity of this compound by promoting it with CeO2 (1:1 molar ratio) and with 1 wt% Pd. This promoted catalyst was lined on cordierite monoliths in a γ-Al2O3-supported form (catalyst weight percentage: 15 wt%) and then tested in a lab-scale test rig under realistic conditions for compressed natural gas-vehicles' exhaust gas treatment. Half methane conversion was achieved at 340 °C (gas high space velocity = 10 000 h−1), nearly the same but with a fourfold lower amount of the expensive noble metal than that used in commercial 4wt%Pd–γ-Al2O3 catalysts.  相似文献   

2.
采用乙二醇溶胶-凝胶法制备了计量比LaMnO_3和非计量比LaMn_(1.2)O_3钙钛矿,并利用稀硝酸处理LaMnO_3制备得到LaMnO_3-AE,然后采用沉积沉淀法制备钙钛矿负载Au催化剂,以考察载体的结构和性质对Au的热稳定性以及催化剂活性的影响。通过X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)和H_2程序升温还原(H_2-TPR)等表征,发现LaMnO_3和LaMn_(1.2)O_3钙钛矿载体虽然有利于Au的分散,但是Au的热稳定性相对较差。相反,经稀硝酸刻蚀的LaMnO_3钙钛矿(LaMnO_3-AE)不利于Au的分散,但是有利于提高Au的热稳定性。在CO氧化反应中,当催化剂在低于500°C焙烧时,LaMn_(1.2)O_3钙钛矿负载Au催化剂的活性要显著高于LaMnO_3和LaMnO_3-AE负载Au催化剂的活性,而当催化剂焙烧温度升高至700°C以上时,LaMnO_3-AE负载Au催化剂却要显著优于LaMnO_3和LaMn_(1.2)O_3钙钛矿负载Au催化剂的活性。  相似文献   

3.
The oxygen separation membrane having perovskite structure for the partial oxidation of methane to synthesis gas was prepared. La0.7Sr0.3Ga0.6Fe0.4O3−δ (LSGF) perovskite membrane coated with La0.6Sr0.4CoO3−δ (LSC) (M1), and the one side of M1 membrane coated with NiO (M2) was prepared to examine the partial oxidation of methane. The single oxygen permeations of the LSC + LSGF (M1) membrane and NiO coated membrane (M2) were measured. The oxygen permeation flux in M1 membrane was higher than that of M1 membrane at 850 °C.

The partial oxidation experiment of methane using the prepared membranes was examined at 850 °C. The value of CH4 conversion and CO selectivity of M2 membrane was higher than that of M1 membrane.

NiO/NiAl2O4 catalyst was used to improve the methane conversion, and the partial oxidation experiment of methane with M1 membrane was examined at 850 °C. The CH4 conversion was 88%, and CO selectivity was 100%.  相似文献   


4.
CrOx/La2O3 mixed oxides, prepared by impregnating La2O3 with appropriate aqueous solutions of (NH4)2CrO4 and calcining at 600 °C for 4 h, have been investigated by means of XRD, TPR, XPS, DRIFTS, and Raman spectroscopy (RS). The formation of the compounds La2CrO6, La(OH)CrO4 and LaCrO4 under these conditions was evidenced. Strong peaks at 864, 884, 913, and 921 cm−1, as well as weak peaks at 136, 180, 354, 370, and 388 cm−1 in the RS spectrum of CrOx/La2O3 have been assigned to La2CrO6.  相似文献   

5.
The liquid-phase alkylation of phenol with 1-dodecene was carried out over WOx/ZrO2 solid acid catalysts. The catalysts were prepared by wet impregnation method using zirconium oxyhydroxide and ammonium metatungstate. Catalysts with different WO3 loading (5–30 wt.%) were prepared and calcined at 800 °C and catalyst with 15% WO3 was calcined from 700–850 °C. All the catalysts were characterized by surface area, XRD, and FTIR. The catalyst with 15% WO3 calcined at 800 °C (15 WZ-800) was found to be the most active in the reaction. The effect of temperature, molar ratio and catalyst weight on dodecene conversion and products selectivity was studied in detail. Under the optimized reaction conditions of 120 °C, phenol/1-dodecene molar ratio 2 and time 2 h, the catalyst 15 WZ-800 gave >99% dodecene conversion with 90% dodecylphenol selectivity. Comparison of the catalytic activity of 15 WZ-800 with sulfated zirconia calcined at 500 °C (SZ-500) and Hβ zeolite showed that activity of SZ-500 was lower than that of 15 WZ-800, while Hβ zeolite showed negligible activity. It is observed that the presence of water in the reaction mixture was detrimental to the catalytic activity of WOx/ZrO2. The catalyst 15 WZ-800 also found to be an efficient catalyst for alkylation of phenol with long-chain olefins like 1-octene and 1-decene.  相似文献   

6.
TG, DTG and DTA have been used in non-isothermal investigations of binary systems of Ni2O3 and La2O3 with barium perchlorate trihydrate, BP·3 H2O, in various molar ratios, carried out under an air (static) atmosphere from ambient to 1000°C. Ni2O3 catalysed the dehydration process of BP·3 H2O and lowered its Tf by 20°C. The discontinuity on the TG curve due to an incomplete perchlorate—chlorate reaction vanished in the presence of either of the oxides: a mechanism is proposed. La2O3 lowered Tf by 50°C; Ti for the decomposition of BP was lowered by 150 and 100°C in the presence of La2O3 and Ni2O3, respectively. X-Ray diffractometry did not reveal any reaction between BP and the two oxides. Kinetic parameters for the decomposition steps in the presence of either of the oxides have been determined.  相似文献   

7.
The mixed metal oxalate precursors, calcium(II)bis(oxalato)cobaltate(II)hydrate (COC), strontium(II)bis(oxalato)cobaltate(II)pentahydrate (SOC) and barium(II)bis(oxalato)cobaltate(II)octahydrate (BOC) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR spectral and X-ray powder diffraction studies. Thermal decomposition studies (TG, DTG and DTA) in air showed that the compound COC decomposed mainly to CaC2O4 and Co3O4 at 340 °C, and a mixture of CaCO3 and Co3O4 identified at 510 °C. A mixture of CaCO3 and Ca3Co2O6 along with the oxides and carbides of both the cobalt and calcium were attributed at 1000 °C as end products. DSC study in nitrogen ascertained the formation of a mixture of CaO and CoO along with a trace of carbon at 550 °C. The mixture species, SrC2O4, CoC2O4 and Co3O4 were generated at 255 °C in case of SOC in air, which ultimately changed to CoSrO3, SrCO3 and oxides of strontium and cobalt at 1000 °C. The several mixture species also generated as intermediate at 332 and 532 °C. The DSC study in nitrogen indicated the formation of CoSrOx (0.5 < x < 1) as end product. In case of BOC in air, a mixture of BaCoO2, BaO, CoO and carbides are identified as end product at 1000 °C through the generation of several intermediate species at 350 and 530 °C. A mixture of BaO and CoO is identified as end product in DSC study in nitrogen. The kinetic parameters have been evaluated for all the dehydration and decomposition steps of all the three compounds using four non-mechanistic equations. Using seven mechanistic equations, the kind of dominance of kinetic control mechanism of the dehydration and decomposition steps are also inferred. The kinetic parameters, ΔH and ΔS of all the steps are explored from the DSC studies. Some of the decomposition products are identified by IR and X-ray powder diffraction studies.  相似文献   

8.
We report the synthesis of La1−xSrxCoO3 nanopowders by solution combustion method using metal nitrates and -alanine (alanine method) or urea (urea method) as fuel. The influence of metal nitrates/organic substance molar ratio and the type of fuel was investigated. The isolated complex precursors were characterized by atomic absorption spectroscopy (AAS), FT-IR spectra and DTA–TG analysis. The La1−xSrxCoO3 (x = 0–0.3) powders were characterized by X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray analysis (SEM–EDX), as well as by specific surface area measurements. XRD patterns indicate the formation of single-phase LaCoO3 (rhombohedral) when as-synthesized powders were calcined at 873 K, 3 h in the case of the alanine method and at 1073 K, 3 h for urea-based system. Also, strontium doped lanthanum cobaltites obtained by both methods at 1273 K are single phase with rhombohedral perovskite-like structure as XRD data have proved. SEM investigation of pure and doped lanthanum cobaltites reveal that the samples prepared by both methods have fine particles with tendency of agglomerates formation with different shapes, spongy aspect and high porosity. La1−xSrxCoO3 nanopowders obtained by alanine method have larger specific surface area values than those prepared by urea method.  相似文献   

9.
以钙钛矿型复合氧化物LaNi0.9Co0.1O3和LaNi0.9Cu0.1O3为前驱体制备了Ni-Co/La2O3和Ni-Cu/La2O3双金属合金催化剂。结果表明,双金属合金催化剂中,各组分间相互稀释,具有较强的抗烧结性能;催化剂表面的积炭主要取决于CO在催化剂表面的吸附形态,Ni-Co双金属催化剂中,Co掺杂改变了CO在催化剂表面的吸附形式和吸附强度,使得Ni-Co双金属催化剂具有较强的抗积炭性能。Ni-Co双金属合金催化剂用于CO甲烷化反应时,显现出较好的活性、选择性和稳定性。  相似文献   

10.
Palladium, silver and palladium–silver catalysts supported on silica were prepared by coimpregnation of support with solution of AgNO3 and Pd(NO3)2. The catalysts were characterized by X-ray powder diffraction (XRD), temperature programmed reduction (TPR), time of flight ion mass spectrometry (ToF-SIMS), chemisorption of carbon monoxide and were tested in the reaction of selective oxidation of glucose to gluconic acid.

XRD and TPR studies have shown that an interaction between Pd and Ag on the surface of silica after oxidation at 500 °C and reduction at 260 °C leads to the formation of solid solutions.

ToF-SIMS images of the surface of 5% Ag/SiO2 catalyst after oxidation at 500 °C and reduction at 260 °C show that Ag atoms supported on silica are not distributed homogenously but tend to form regions of enhanced Ag concentration. Positive ions images of the surface of 5% Pd/SiO2 catalyst also display regions of enhanced concentration of Pd atoms, but they are more homogenously distributed on silica.

ToF-SIMS peak intensity ratio 108Pd+/107Ag+ for bimetallic 5% Pd–5% Ag/SiO2 catalysts has a lower value than that obtained for physical mixture 5% Pd/SiO2–5% Ag/SiO2 which indicates that the surface of bimetallic catalyst is enriched with silver atoms.  相似文献   


11.
采用溶剂热法制备了La_(1-x)Rb_xM n O_3(x=0、0.1、0.2、0.3)钙钛矿型复合金属氧化物催化剂,通过XRD、FT-IR、SEM、XPS和H_2-TPR等手段对催化剂进行表征,在微型固定床反应器上评价了其同时消除NO和碳烟的催化性能。结果表明,La_(1-x)Rb_xM n O_3催化剂具有单一的钙钛矿结构,样品中Mn物种以Mn~(3+)和Mn~(4+)的形式存在。与LaMn O_3催化剂相比,Rb~+部分取代La~(3+),催化剂体系中形成较多的高价Mn~(4+)和氧空位,其氧化还原性能提高,催化性能得到改善。随着Rb~+取代量的增加,NO转化率升高,碳烟燃烧温度降低。当x=0.3时,La_(0.7)Rb_(0.3)M n O_3催化剂上CO_2浓度峰值温度t_(max)为430℃,CO_2的选择性为99.0%;反应温度为429℃,NO转化率达到最大,为59.7%。  相似文献   

12.
A series of γ-Al2O3 samples modified with various contents of sulfate (0–15 wt.%) and calcined at different temperatures (350–750 °C) were prepared by an impregnation method and physically admixed with CuO–ZnO–Al2O3 methanol synthesis catalyst to form hybrid catalysts. The direct synthesis of dimethyl ether (DME) from syngas was carried out over the prepared hybrid catalysts under pressurized fixed-bed continuous flow conditions. The results revealed that the catalytic activity of SO42−/γ-Al2O3 for methanol dehydration increased significantly when the content of sulfate increased to 10 wt.%, resulting in the increase in both DME selectivity and CO conversion. However, when the content of sulfate of SO42−/γ-Al2O3 was further increased to 15 wt.%, the activity for methanol dehydration was increased, and the selectivity for DME decreased slightly as reflected in the increased formation of byproducts like hydrocarbons and CO2. On the other hand, when the calcination temperature of SO42−/γ-Al2O3 increased from 350 °C to 550 °C, both the CO conversion and the DME selectivity increased gradually, accompanied with the decreased formation of CO2. Nevertheless, a further increase in calcination temperature to 750 °C remarkably decreased the catalytic activity of SO42−/γ-Al2O3 for methanol dehydration, resulting in the significant decline in both DME selectivity and CO conversion. The hybrid catalyst containing the SO42−/γ-Al2O3 with 10 wt.% sulfate and calcined at 550 °C exhibited the highest selectivity and yield for the synthesis of DME.  相似文献   

13.
A series of high surface area titanium dioxide samples (P-TiO2) with varying phosphate content have been prepared by the sol–gel technique. The structural characterization of the samples included X-ray powder diffraction, diffuse reflectance infrared and UV–vis spectroscopy (DRIFT and UV–vis–DR), and nitrogen adsorption measurements. The structural properties of the P-TiO2 samples significantly changed with the phosphate content and calcination temperature. According to XRD data the presence of phosphate shifts the anatase rutile phase transition to higher temperatures, revealing that phosphate improves the thermal stability of the samples. The specific surface area and the semiconductor band gap energy increase with the phosphate content.

The photocatalytic activity of TiO2 and P-TiO2 was studied by phenol degradation in liquid phase. A small amount of phosphate of the catalysts increases the photocatalytic activity, but further increase of the P/Ti molar ratio (above 0.01), leads to a considerable loss in activity. The optimal calcination temperature of P-TiO2 was 300–500 °C. The phenol conversion rate is highest with catalysts calcined at 700 °C, but phenol does not degrade to carbon dioxide.  相似文献   


14.
Sintering behavior and bioactivity of diopside, CaMgSi2O6, prepared by a coprecipitation process were examined for its biomedical applicability. As-prepared powder was synthesized by adding aqueous ammonia to an ethanol solution containing Ca(NO3)2·4H2O, Mg(NO3)2·6H2O, and Si(OC2H5)4 and characterized by means of TG–DTA, XRD, and TG–MS. The dried powder was X-ray amorphous and crystallized into diopside at 845.5 °C. The glass network formation by SiO4 tetrahedra was almost completed below 800 °C. The bioactivity of the diopside prepared by sintering the compressed powder at 1100 °C for 2 h was evaluated by immersion of the sintered body in a simulated body fluid (SBF) at 36.5 °C. Leaf-like apatite particles were found to be formed on the surface of the sintered body and grew with passage of soaking time. This apatite-forming behavior in the SBF is related to the dissolution of Ca(II) ions from the sintered body in the early stage of immersion. Thus, diopside prepared by the coprecipitation process using the metal alkoxide and the metal salts was found to have an apatite-forming ability.  相似文献   

15.
Surface characterization of silica-supported cobalt oxide catalysts   总被引:1,自引:0,他引:1  
Silica supported cobalt oxides were prepared by the impregnation method, using an aqueous solution of cobalt nitrate hexahydrate (Co(NO3)· 6H2O), then calcined at different temperatures (510, 620 and 870 K). Characterization of the samples was carried out by X-ray diffraction, N2-adsorption at −196°C, UV–Vis diffuse reflectance spectroscopy and KBr-IR spectroscopy of the calcination products. The surface acidity was studied by IR spectroscopy of adsorbed pyridine at different temperatures (300, 370, 470 and 570 K). Results indicated that Co3O4 is the stable phase on silica, however, dispersion of minor amount of cobalt oxide could not be ruled out. Results also indicated that the crystallinity of the formed Co3O4 increased by increasing the loading level and/or the calcination temperature. Furthermore, the surface area of the support was decreased by increasing the loading level and the calcination temperatures. It has been also found that the surface of the supported catalysts exposed strong different Lewis acid sites.  相似文献   

16.
The liquid-phase alkylation of phenol with benzyl alcohol was carried out using zirconia-supported phosphotungstic acid (PTA) as catalyst. The catalysts with different PTA loadings (5–20 wt.% calcined at 750 °C) and calcination temperature (15 wt.% calcined from 650 to 850 °C) were prepared and characterized by 31P MAS NMR and FT-IR pyridine adsorption spectroscopy. The catalyst with optimum PTA loading (15%) and calcination temperature (750 °C) was prepared in different solvents. 31P MAS NMR spectra of the catalysts showed two types of phosphorous species, one is the Keggin unit and the other is the decomposition product of PTA and the relative amount of each depends on PTA loading, calcination temperature and the solvent used for the catalyst preparation. The catalysts with 15% PTA on zirconia calcined at 750 °C showed the highest Brönsted acidity. At 130 °C and phenol/benzyl alcohol molar ratio of 2 (time, 1 h), the most active catalyst, 15% PTA calcined at 750 °C gave 98% benzyl alcohol conversion with 83% benzyl phenol selectivity.  相似文献   

17.
The Ru/Al_2O_3 catalysts modified with metal oxide(K_2O and La_2O_3)were prepared via incipient wetness impregnation method from RuCl_3·nH_2O mixed with nitrate loading on Al_2O3 support. The activity of catalysts was evaluated under simulative conditions for the preferential oxidation of CO (CO-PROX)from the hydrogen-rich gas streams produced by reforming gas,and the performances of catalysts were investigated by XRD and TPR.The results showed that the activity temperature of the modified catalysts Ru-K_2O/Al_2O3 and Ru-La_2O_3/Al_2O_3 were lowered approximately 30℃compared with pure Ru/Al_2O_3,and the activity temperature range was widened.The conversion of CO on Ru-K_2O/Al_2O_3 and Ru-La_2O_3/Al_2O_3 was above 99% at 140-160℃,suitable to remove CO in a hydrogen-rich gas and the selectivity of Ru-La_2O_3/Al_2O_3 was higher than that of Ru-K_2O/Al_2O_3 in the active temperature range. Slight methanation reaction was detected at 220℃and above.  相似文献   

18.
The thermal decomposition of ammonium vanadyl oxalate supported on La2O3, MgO, SiO2, Al2O3, ZrO2, TiO2, SAPO-5, and ZSM-5 oxides in a dynamic atmosphere of dry air was compared by thermal gravimetric analysis (TG) and differential thermal analysis (DTA). The calcined catalysts were characterized by X-ray diffractometry (XRD). The TG and DTA results demonstrate that the surface acid-base properties of the oxides play a significant role in the decomposition behaviour of the supported ammonium vanadyl oxalate, i.e. the basic oxides exhibit an endothermic effect and the acidic oxides show an exothermic effect. Two mechanisms are suggested for thermal decomposition of ammonium vanadyl oxalate on basic and acidic oxides, respectively. After transformation of the ammonium vanadyl oxalate to vanadia, subsequent rearrangement of the vanadia on the surface of the supports was also observed. During the thermal treatment or calcination in air, solid state reactions of vanadia with the surface of oxides such as La2O3, ZrO2 and TiO2 took place to form new phases.  相似文献   

19.
The high-valent bis(oxo)-bridged dimanganese(IV) complexes with the series of binucleating 4,5-X2-o-phenylenebis(oxamate) ligands (opbaX2; X = H, Cl, Me) (1a–c) have been synthesized and characterized structurally, spectroscopically and magnetically. Complexes 1a–c possess unique Mn2(μ-O)2 core structures with two o-phenylenediamidate type additional bridges which lead to exceptionally short Mn–Mn distances (2.63–2.65 Å) and fairly bent Mn–O–Mn angles (94.1°–94.6°). The cyclovoltammograms of 1a–c in acetonitrile (25 °C, 0.1 M Bu4NPF6) show an irreversible one-electron oxidation peak at moderately high anodic potentials (Eap = 0.50–0.85 V versus SCE), while no reductions are observed in the potential range studied (down to −2.0 V versus SCE). These dinuclear manganese oxamate complexes are excellent catalysts for the aerobic oxidation of 3,5-di-tert-butylcatechol to the corresponding o-quinone in acetonitrile at 25 °C. The order of increasing catecholase activity (kobs) with the electron donor character of the ligand substituents as 1b (X = Cl) < 1a (X = H) < 1c (X = Me) correlates with Hammett σ+ values (ρ = −0.95). A mechanism involving initial activation of the catechol substrate by coordination to the dimetal center and subsequent oxidation to quinone by O2 is proposed, which is consistent with the observed saturation kinetics.  相似文献   

20.
The solid–solid interactions between pure and alumina-doped cobalt and ferric oxides have been investigated using DTA, IR and XRD techniques. Equimolar proportions of basic cobalt carbonate and ferric oxide and different amounts of aluminum nitrate were added as dopant substrate. The amounts of dopant were 0.75, 1.5, 3.0 and 4.5 mol% Al2O3.

The results obtained revealed that solid–solid interaction between Fe2O3 and Co3O4 takes place at temperatures starting from 700°C to produce cobalt ferrite. The degree of propagation of this reaction increases progressively as a function of precalcination temperature and Al2O3-doping of the reacting solids. However, the heating of pure mixed solids at 1000°C for 6 h. was not sufficient to effect the complete conversion of the reacting solids into CoFe2O4, while the addition of a small amount of Al2O3 (1.5 mol%) to ferric/cobalt mixed solids followed by precalcination at 1000°C for 6 h conducted the complete conversion of the reacting solids into cobalt ferrite. The heat treatment of pure and the 0.75 mol%-doped solids at 900 and 1000°C effected the disappearance of most of IR transmission bands of the free oxides with subsequent appearance of new bands characteristic for the CoFe2O4 structure. An increase in the amount of Al2O3 added from 1.5–4.5 mol% to the mixed solids precalcined at 1000°C led to the disappearance of all bands of free oxides and appearance of all bands of cobalt ferrite. The promotion effect of Al2O3 in cobalt ferrite formation was attributed to an effective increase in the mobility of the various reacting cations. The activation energy of formation (ΔE) of CoFe2O4 phase was determined for pure and doped solids. The computed values of ΔE were, respectively, 99.6, 87.8, 71.9, 64.7 and 48.7 kJ mol−1 for the pure solid and those treated with 0.75, 1.5, 3 and 4.5 mol% Al2O3.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号