首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A regularization of the 2D-Euler equation with periodic boundary conditions is introduced, having the same infinitesimal invariants as the Euler equation. A flow of measure-preserving transformations is constructed on L1-spaces induced by the Gaussian measure with covariance given by the inverse of the enstrophy and it is shown that this flow is the only measure-preserving flow inducing a strongly continuous semigroup on the corresponding L1-space. We also prove similar uniqueness results for a corresponding class of regularized stochastic 2D-Navier-Stokes equations.  相似文献   

2.
Blake Temple (Trans. Amer. Math. Soc.280 (1983), 781–795) has described the hyperbolic systems of two conservation laws whose shock and rarefaction curves coincide. In this note, we prove the global existence of weak solutions for such systems, with any bounded variation initial condition. The proof is based upon standard numerical schemes, as well as upon parabolic regularization. The key is that the total variation of the Riemann invariants is decreasing in time. At least, in the case of the initial condition with compact support, we prove by using the Glimm scheme that the system is decoupling in two conservation laws in one unknown, in finite time.  相似文献   

3.
This paper is concerned with the limit relations from the Euler equations of one‐dimensional compressible fluid flow and the magnetohydrodynamics equations to the simplified transport equations, where the δ‐shock waves occur in their Riemann solutions of the latter two equations. The objective is to prove that the Riemann solutions of the perturbed equations coming from the one‐dimensional simplified Euler equations and the magnetohydrodynamics equations converge to the corresponding Riemann solutions of the simplified transport equations as the perturbation parameterx ε tends to zero. Furthermore, the result can also be generalized to more general situations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
We consider a regularization for a class of discontinuous differential equations arising in the study of neutral delay differential equations with state dependent delays. For such equations the possible discontinuity in the derivative of the solution at the initial point may propagate along the integration interval giving rise to so-called “breaking points”, where the solution derivative is again discontinuous. Consequently, the problem of continuing the solution in a right neighborhood of a breaking point is equivalent to a Cauchy problem for an ode with a discontinuous right-hand side (see e.g. Bellen et al., 2009 [4]). Therefore a classical solution may cease to exist.The regularization is based on the replacement of the vector-field with its time average over an interval of length ε>0. The regularized solution converges as ε0+ to the classical Filippov solution (Filippov, 1964, 1988 [13] and [14]). Several properties of the solutions corresponding to small ε>0 are presented.  相似文献   

5.
In this paper, we prove the local‐in‐time existence and a blow‐up criterion of solutions in the Besov spaces for the Euler‐α equations of inviscid incompressible fluid flows in . We also establish the convergence rate of the solutions of the Euler‐α equations to the corresponding solutions of the Euler equations as the regularization parameter α approaches 0 in . Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The phenomena of concentration and cavitation and the formation of δ-shocks and vacuum states in solutions to the isentropic Euler equations for a modified Chaplygin gas are analyzed as the double parameter pressure vanishes. Firstly, the Riemann problem of the isentropic Euler equations for a modified Chaplygin gas is solved analytically. Secondly, it is rigorously shown that, as the pressure vanishes, any two-shock Riemann solution to the isentropic Euler equations for a modified Chaplygin gas tends to a δ-shock solution to the transport equations, and the intermediate density between the two shocks tends to a weighted δ-measure that forms the δ-shock; any two-rarefaction-wave Riemann solution to the isentropic Euler equations for a modified Chaplygin gas tends to a two-contact-discontinuity solution to the transport equations, the nonvacuum intermediate state between the two rarefaction waves tends to a vacuum state. Finally, some numerical results exhibiting the formation of δ-shocks and vacuum states are presented as the pressure decreases.  相似文献   

7.
We consider a quasilinear equation that consists of the inviscid Burgers equation plus O(α2) nonlinear terms. As we show, these extra terms regularize the Burgers equation in the following sense: for smooth initial data, the α > 0 equation has classical solutions globally in time. Furthermore, in the zero-α limit, solutions of the regularized equation converge strongly to weak solutions of the Burgers equation. We present numerical evidence that the zero-α limit satisfies the Oleinik entropy inequality. For all α ≥ 0, the regularized equation possesses a nonlocal Poisson structure. We prove the Jacobi identity for this generalized Hamiltonian structure.  相似文献   

8.
We consider a family of contour dynamics equations depending on a parameter α with 0<α?1. The vortex patch problem of the 2-D Euler equation is obtained taking α→0, and the case α=1 corresponds to a sharp front of the QG equation. We prove local-in-time existence for the family of equations in Sobolev spaces.  相似文献   

9.
Using a method of stochastic perturbation of a Langevin system associated with the non-viscous Burgers equation we introduce a system of PDE that can be considered as a regularization of the pressureless gas dynamics describing sticky particles. By means of this regularization we describe how starting from smooth data a δ-singularity arises in the component of density. Namely, we find the asymptotics of solution at the point of the singularity formation as the parameter of stochastic perturbation tends to zero. Then we introduce a generalized solution in the sense of free particles (FP-solution) as a special limit of the solution to the regularized system. This solution corresponds to a medium consisting of non-interacting particles. The FP-solution is a bridging step to constructing solutions to the Riemann problem for the pressureless gas dynamics describing sticky particles. We analyze the difference in the behavior of discontinuous solutions for these two models and the relations between them. In our framework we obtain a unique entropy solution to the Riemann problem in 1D case.  相似文献   

10.
The Riemann solutions for the Euler system of conservation laws of energy and momentum in special relativity for polytropic gases are considered. It is rigorously proved that, as pressure vanishes, they tend to the two kinds of Riemann solutions to the corresponding pressureless relativistic Euler equations: the one includes a delta shock, which is formed by a weighted δ-measure, and the other involves vacuum state.  相似文献   

11.
The main purpose of this paper is to justify the Stokes-Blasius law of boundary-layer thickness for the 2-D Boussinesq equations with vanishing diffusivity limit in the half plane, i.e., we shall prove that the boundary-layer thickness is of the value δ(ε)=εα with any α∈(0,1/2) for small diffusivity coefficient ε>0. Moreover, the convergence rates of the vanishing diffusivity limit are also obtained.  相似文献   

12.
We derive Euler–Lagrange‐type equations for fractional action‐like integrals of the calculus of variations which depend on the Riemann–Liouville derivatives of order (α, β), α>0, β>0, recently introduced by Cresson. Some interesting consequences are obtained and discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we study the global L solutions for the Cauchy problem of nonsymmetric system (1.1) of Keyfitz-Kranzer type. When n=1, (1.1) is the Aw-Rascle traffic flow model. First, we introduce a new flux approximation to obtain a lower bound ρε,δ?δ>0 for the parabolic system generated by adding “artificial viscosity” to the Aw-Rascle system. Then using the compensated compactness method with the help of L1 estimate of wε,δx(⋅,t) we prove the pointwise convergence of the viscosity solutions under the general conditions on the function P(ρ), which includes prototype function , where γ∈(−1,0)∪(0,∞), A is a constant. Second, by means of BV estimates on the Riemann invariants and the compensated compactness method, we prove the global existence of bounded entropy weak solutions for the Cauchy problem of general nonsymmetric systems (1.1).  相似文献   

14.
We construct with the aid of regularizing filters a new class of improved regularization methods, called modified Tikhonov regularization (MTR), for solving ill-posed linear operator equations. Regularizing properties and asymptotic order of the regularized solutions are analyzed in the presence of noisy data and perturbation error in the operator. With some accurate estimates in the solution errors, optimal convergence order of the regularized solutions is obtained by a priori choice of the regularization parameter. Furthermore, numerical results are given for several ill-posed integral equations, which not only roughly coincide with the theoretical results but also show that MTR can be more accurate than ordinary Tikhonov regularization (OTR).  相似文献   

15.
We consider the Navier–Stokes equations in a 2D-bounded domain with general non-homogeneous Navier slip boundary conditions prescribed on permeable boundaries, and study the vanishing viscosity limit. We prove that solutions of the Navier–Stokes equations converge to solutions of the Euler equations satisfying the same Navier slip boundary condition on the inflow region of the boundary. The convergence is strong in Sobolev’s spaces $W^{1}_{p}, p>2$ , which correspond to the spaces of the data.  相似文献   

16.
We are concerned with entropy solutions of the 2×2 relativistic Euler equations for perfect fluids in special relativity. We establish the uniqueness of Riemann solutions in the class of entropy solutions in LBVloc with arbitrarily large oscillation. Our proof for solutions with large oscillation is based on a detailed analysis of global behavior of shock curves in the phase space and on special features of centered rarefaction waves in the physical plane for this system. The uniqueness result does not require specific reference to any particular method for constructing the entropy solutions. Then the uniqueness of Riemann solutions yields their inviscid large-time stability under arbitrarily largeL1LBVloc perturbation of the Riemann initial data, as long as the corresponding solutions are in L and have local bounded total variation that allows the linear growth in time. We also extend our approach to deal with the uniqueness and stability of Riemann solutions containing vacuum in the class of entropy solutions in L with arbitrarily large oscillation.  相似文献   

17.
An extended entropy condition (E) has previously been proposed, by which we have been able to prove uniqueness and existence theorems for the Riemann problem for general 2-conservation laws. In this paper we consider the Riemann problem for general n-conservation laws. We first show how the shock are related to the characteristic speeds. A uniqueness theorem is proved subject to condition (E), which is equivalent to Lax's shock inequalities when the system is “genuinely nonlinear.” These general observations are then applied to the equations of gas dynamics without the convexity condition Pvv(v, s) > 0. Using condition (E), we prove the uniqueness theorem for the Riemann problem of the gas dynamics equations. This answers a question of Bethe. Next, we establish the relation between the shock speed σ and the entropy S along any shock curve. That the entropy S increases across any shock, first proved by Weyl for the convex case, is established for the nonconvex case by a different method. Wendroff also considered the gas dynamics equations without convexity conditions and constructed a solution to the Riemann problem. Notice that his solution does satisfy our condition (E).  相似文献   

18.
In this paper, we study the Rm (m > 0) Riemann boundary value problems for regular functions, harmonic functions and bi-harmonic functions with values in a universal clifford algebra C(Vn,n). By using Plemelj formula, we get the solutions of Rm (m > 0) Riemann boundary value problems for regular functions. Then transforming the Riemann boundary value problems for harmonic functions and bi-harmonic functions into the Riemann boundary value problems for regular functions, we obtain the solutions of Rm (m > 0) Riemann boundary value problems for harmonic functions and bi-harmonic functions.  相似文献   

19.
The Generalized Riemann Problem (GRP) for a nonlinear hyperbolic system of m balance laws (or alternatively “quasi-conservative” laws) in one space dimension is now well-known and can be formulated as follows: Given initial-data which are analytic on two sides of a discontinuity, determine the time evolution of the solution at the discontinuity. In particular, the GRP numerical scheme (second-order high resolution) is based on an analytical evaluation of the first time derivative. It turns out that this derivative depends only on the first-order spatial derivatives, hence the initial data can be taken as piecewise linear. The analytical solution is readily obtained for a single equation (m = 1) and, more generally, if the system is endowed with a complete (coordinate) set of Riemann invariants. In this case it can be “diagonalized” and reduced to the scalar case. However, most systems with m > 2 do not admit such a set of Riemann invariants. This paper introduces a generalization of this concept: weakly coupled systems (WCS). Such systems have only “partial set” of Riemann invariants, but these sets are weakly coupled in a way which enables a “diagonalized” treatment of the GRP. An important example of a WCS is the Euler system of compressible, nonisentropic fluid flow (m = 3). The solution of the GRP discussed here is based on a careful analysis of rarefaction waves. A “propagation of singularities” argument is applied to appropriate Riemann invariants across the rarefaction fan. It serves to “rotate” initial spatial slopes into “time derivative”. In particular, the case of a “sonic point” is incorporated easily into the general treatment. A GRP scheme based on this solution is derived, and several numerical examples are presented. Special attention is given to the “acoustic approximation” of the analytical solution. It can be viewed as a proper linearization (different from the approach of Roe) of the nonlinear system. The resulting numerical scheme is the simplest (second-order, high-resolution) generalization of the Godunov scheme.  相似文献   

20.
The paper studies the existence and non-existence of global weak solutions to the Cauchy problem for a class of quasi-linear wave equations with nonlinear damping and source terms. It proves that when α?max{m,p}, where m+1, α+1 and p+1 are, respectively, the growth orders of the nonlinear strain terms, the nonlinear damping term and the source term, under rather mild conditions on initial data, the Cauchy problem admits a global weak solution. Especially in the case of space dimension N=1, the weak solutions are regularized and so generalized and classical solution both prove to be unique. On the other hand, if 0?α<1, and the initial energy is negative, then under certain opposite conditions, any weak solution of the Cauchy problem blows up in finite time. And an example is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号