首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of heat stress on tomato fruit protein expression   总被引:5,自引:0,他引:5  
Iwahashi Y  Hosoda H 《Electrophoresis》2000,21(9):1766-1771
We delayed the ripening of tomato fruit for several days (average 5 days) by a 1-day heat treatment at 37-42 degrees C. We analyzed the tomato fruit pericarp proteins, which were altered by the heat stress, using two-dimensional electrophoresis. Heat stress caused about 23.7% of the proteins in the pericarp to disappear and about 1.1% of new proteins to appear. We determined their apparent molecular mass, isoelectric point, and N-terminal amino acid sequence. Identified proteins included antioxidant enzymes, heat shock proteins, cell-wall-related proteins, etc.  相似文献   

2.
Small heat shock proteins (sHsp) form a large ubiquitous family of proteins expressed in all phyla of living organisms. The members of this family have low molecular masses (13-43 kDa) and contain a conservative α-crystallin domain. This domain (about 90 residues) consists of several β-strands forming two β-sheets packed in immunoglobulinlike manner. The α-crystallin domain plays an important role in formation of stable sHsp dimers, which are the building blocks of the large sHsp oligomers. A large N-terminal domain and a short C-terminal extension flank the α-crystallin domain. Both the N-terminal domain and the C-terminal extension are flexible, susceptible to proteolysis, prone to posttranslational modifications, and are predominantly intrinsically disordered. Differently oriented N-terminal domains interact with each other, with the core α-crystallin domain of the same or neighboring dimers and play important role in formation of large sHsp oligomers. Phosphorylation of certain sites in the N-terminal domain affects the sHsp quaternary structure, the sHsp interaction with target proteins and the sHsp chaperone-like activity. The C-terminal extension often carrying the conservative tripeptide (I/V/L)-X-(I/V/L) is capable of binding to a hydrophobic groove on the surface of the core α-crystallin domain of neighboring dimer, thus affecting the plasticity and the overall structure of sHsp oligomers. The Cterminal extension interacts with target proteins and affects their interaction with the α-crystallin domain increasing solubility of the complexes formed by sHsp and their targets. Thus, disordered N- and C-terminal sequences play important role in the structure, regulation and functioning of sHsp.  相似文献   

3.
The inducible 70 kDa heat shock proteins (Hsp70) in mice are encoded by two almost identical genes, hsp70.1 and hsp70.3. Studies have found that only hsp70.1 is induced by hypertonic stress while both hsp70.1 and hsp70.3 genes are expressed in response to heat shock stress. It is unclear if the human counterparts, hsp70-2 and hsp70-1, are differentially regulated by heat shock and osmotic stress. This study found that only hsp70-2 was induced by hypertonic stress in human embryonic kidney epithelial cells and fibroblasts, while heat shock stress induced both hsp70-1 and hsp70-2. The human hsp70-2 promoter region contains three TonE (tonicity-responsive enhancer) sites, which were reported to play an important role in the response to hypertonicity. When the reporter plasmids containing different parts of the 5' flanking region of hsp70-2 were transfected into human embryonic kidney epithelial cells or fibroblasts, one TonE site at -135 was found to play a key role in the response to hypertonicity. The inactivation of the TonE site using site-directed mutagenesis led to the complete loss of induction by hypertonicity, which demonstrates the essential role of the TonE site. This suggests that the TonE site and the TonEBP (TonE binding protein) are the major regulators for the cellular response against high osmolarity in human kidney tissue.  相似文献   

4.
Among chaperone-like functioning proteins, the lens alpha-crystallins are of particular interest because they are not renewed, and even minor alterations can hurt their function of maintaining the proper refractive index and avoiding cataract formation in the lens. Several reports have suggested the occurrence of remarkable structural modifications in lens proteins in the presence of endogenous and exogenous sensitizers upon exposure to light. In particular, it has been shown in vitro that hypericin, the active ingredient of Hypericum, can bind to and, in the presence of light, cause the photopolymerization of alpha-crystallin. On the basis of these results it has also been suggested that a subsequent significant impairment of the protein function can occur. Using absorption and emission spectroscopic techniques, as well as circular dichroism, we have studied the structural modifications of alpha-crystallin resulting from its interaction with hypericin after irradiation with visible light. To investigate the chaperone-like function of alpha-crystallin, the heat-induced aggregation kinetics of another lens protein, betaLow-crystallin, was monitored by measuring the apparent absorption due to scattering at 360 nm as a function of time, and no apparent damage to its functional role was observed. Spectroscopic results, on the contrary, show a prominent reduction in both tryptophan and hypericin fluorescence emission intensity after light irradiation, suggesting an alteration in the tryptophan microenvironment and a high degree of packing of the chromophore due to photoinduced modification of the molecular framework. Control experiments on alpha-crystallin structurally modified by light in the presence of hypericin indicated that the protein still retains its ability to chaperone both lens crystallins and insulin.  相似文献   

5.
The proteomes of exponentially growing and stationary cells of Lactobacillus delbrueckii ssp. bulgaricus grown in rich medium (MRS) were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE) and quantified after Coomassie staining. Stationary cells grown in MRS were inoculated in reconstituted skim milk, and "early" protein synthesis during the first 30 min of fermentation in milk was monitored by [35S]methionine labeling and 2-DE. In contrast to exponentially growing or stationary cells, the predominant "early" proteins were small (< 15 kDa) and of low pI (< 5.3). Quantification of the proteome of the "early" lag phase based on 47 "spots" revealed that only three "early" proteins accounted for more than 80% of the total label. They were identified as pI 4.7 and 4.9 isoforms of the heat-stable phosphoryl carrier protein (HPr) with 45.2 and 9.4% of total label, respectively, and an unknown protein called EPr1 ("early" protein 1) with 26.6% of total label. Although an N-terminal sequence of 19 amino acids was obtained, no homologs to EPr1 could be found. De novo synthesis of the 10 and 60 kDa heat shock proteins (GroES and GroEL) was considerably lower (0.04 and 0.9% of total label, respectively), indicating only low levels of stress. Synthesis of triosephosphate isomerase (Tpi) as marker for glycolytic enzymes reached only 0.08% of total label. Our results demonstrate that inoculation in milk, resulting in a change from glucose to lactose as carbon source, imposes only little need for synthesis of stress or glycolytic enzymes, as sufficient proteins are present in the stationary, MRS-grown cells. The high level of expression of the pI 4.7 isoform of HPr suggests a regulatory function of the presumed Ser-46 phosphorylated form of HPr.  相似文献   

6.
杨洁  姚树森  赵永强  薛燕  李萍 《分析化学》2011,39(4):486-490
建立了互补型多酶解法与串联质谱联用鉴定蛋白C末端技术.在大量蛋白的实际检测中,根据蛋白序列分别采用溴化氰、胰蛋白酶、谷氨酸内切酶和糜蛋白酶进行酶解或混合酶解.利用此技术对8个蛋白不同长度的C末端肽段(分子量分布在200~3000 Da之间,目的肽段分别为m/z 272.20,788.45,796.48,944.58,1...  相似文献   

7.
The knowledge on the factors affecting the heat-induced physicochemical changes of milk proteins and milk protein stabilized oil-in-water emulsions has been advanced for the last decade. Most of the studies have emphasized on the understanding of how milk-protein-stabilized droplets and the non-adsorbed proteins determine the physicochemical and rheological properties of protein-concentrated dairy colloids. The physical stability of concentrated protein-stabilized emulsions (i.e., against creaming or phase separation/gelation after heat treatment) can be modulated by carefully controlling the colloidal properties of the protein-stabilized droplets and the non-adsorbed proteins in the aqueous phase. This article focusses on the review of the physical stability of concentrated milk protein-stabilized oil-in-water emulsions as influenced by physicochemical factors, interparticle interactions (i.e., protein–protein, and droplet–droplet interactions) and processing conditions. Emphasis has been given to the recent advances in the formation, structure and physical stability of oil-in-water emulsions prepared with all types of milk proteins, reviewing in particular the impact of pre- and post-homogenization heat treatments. In addition, the importance of common components found in the continuous phase of heat-treated nutritional emulsions that can promote aggregation (polymers, sugars, minerals) will be highlighted. Finally, the routes of manipulating the steric stabilization of these emulsions to control heat-induced aggregation—through protein–surfactant, protein–protein, protein–polysaccharide interactions and through the incorporation of protein based colloidal particles—are reviewed.  相似文献   

8.
Effects of quercetin on heat-induced phosphorylation of stathmin in JURKAT cells were examined. Two-dimensional electrophoresis of stathmin showed that heat shock increases mono- and diphosphorylation of stathmin. Monophosphorylation induced by heat shock was inhibited by the presence of 0.1 mM quercetin, but not by the presence of 0.1 microM staurosporine. Immunoblot analysis of phosphorylated stathmin showed that heat-induced phosphorylation at Ser-38 was inhibited by quercetin but not by staurosporine. Quercetin enhanced heat-induced tyrosine phosphorylation of MAP kinase. These observations indicate that quercetin inhibits heat-induced phosphorylation at Ser-38 of stathmin but mitogen-activated protein (MAP) kinase is not involved in its phosphorylation.  相似文献   

9.
In the present study, the heat-induced interaction between whey proteins and casein micelles was studied. To that end, the particle size distribution of 5.5% (w/w) casein micellar dispersions was determined by photon correlation spectroscopy as a function of both the whey protein concentration and heating time at 80 °C. The results clearly indicated that heat-induced aggregation of the casein micelles only occurred in the presence of whey proteins.

In an effort to overcome the heat-induced interactions between whey proteins and casein micelles, the influence of different soybean lecithins was investigated. Comparing native to hydrolysed, as well as hydroxylated soybean lecithin, it was observed that the heat-stabilising effect of the lecithins was directly related to their hydrophilicity: whereas native soybean lecithin had hardly any beneficial effect, highly hydrolysed as well as hydroxylated soybean lecithin largely prevented heat-induced casein micelle aggregation in the presence of whey proteins.

From experimental observations on the heat-induced decrease of whey protein solubility both in the absence and presence of hydrolysed lecithin, it was deduced that the latter may stabilise the exposed hydrophobic surface sites of heat-denatured whey proteins. Dynamic surface tension measurements indicated that the heat-stabilising properties of lecithins were mainly determined by their critical aggregation concentration.  相似文献   


10.

Background  

Hundreds of extracellular proteins polymerise into filaments and matrices by using zona pellucida (ZP) domains. ZP domain proteins perform highly diverse functions, ranging from structural to receptorial, and mutations in their genes are responsible for a number of severe human diseases. Recently, PLAC1, Oosp1-3, Papillote and CG16798 proteins were identified that share sequence homology with the N-terminal half of the ZP domain (ZP-N), but not with its C-terminal half (ZP-C). The functional significance of this partial conservation is unknown.  相似文献   

11.
The kinetics of peptide release during in vitro digestion of 4 protein sources (casein, cod protein, soy protein, and gluten) were investigated. Samples were sequentially hydrolyzed with pepsin (30 min) and pancreatin (2, 4, or 6 h) in a dialysis cell with continuous removal of digestion products. Nondialyzed digests were fractionated by ion-exchange chromatography and ultrafiltration. Animal proteins were digested at a greater rate than plant proteins. Target amino acids of specific enzymes appeared more rapidly in the dialyzed fractions when compared to other amino acids. Throughout the hydrolysis, nondialyzed digests contained a higher proportion of peptide mixtures with basic-neutral properties. Except for gluten, peptide fractions with molecular weights that exceeded 10 kDa (basic-neutral, BN > 10) were rapidly hydrolyzed during the first 2 h of pancreatin digestion. The kinetics of release and the composition of peptide fractions were different when the protein sources were compared. The analysis of amino acids revealed that threonine and proline proportions were relatively high in BN > 10 and in peptide fractions with molecular weight between 10-1 kDa (BN 10-1), while tyrosine, phenylalanine, lysine, and arginine predominated in the low molecular weight (<1 kDa) fractions. More resistant peptides were generally rich in proline and glutamic acid. The role of in vitro digestion assays in dietary protein quality evaluation is discussed.  相似文献   

12.
13.
Limited proteolysis is an important and widely used method for analyzing the tertiary structure and determining the domain boundaries of proteins. Here we describe a novel method for determining the N- and C-terminal boundary amino acid sequences of products derived from limited proteolysis using semi-specific and/or non-specific enzymes, with mass spectrometry as the only analytical tool. The core of this method is founded on the recognition that cleavage of proteins with non-specific proteases is not random, but patterned. Based on this recognition, we have the ability to determine the sequence of each proteolytic fragment by extracting a common association between data sets containing multiple potential sequences derived from two or more different mass spectral molecular weight measurements. Proteolytic product sequences derived from specific and non-specific enzymes can be accurately determined without resorting to the conventional time-consuming and laborious methods of SDS-PAGE and N-terminal sequencing analysis. Because of the sensitivity of mass spectrometry, multiple transient proteolysis intermediates can also be identified and analyzed by this method, which allows the ability to monitor the progression of proteolysis and thereby gain insight into protein structures.  相似文献   

14.
We previously reported that transgenic (TG) mice over-expressing translationally controlled tumor protein (TCTP) developed systemic arterial hypertension at about 6 weeks after birth. In the present study, we identified, using proteomics technologies, 24 other proteins that were differentially expressed in the heart of TCTP over-expressing TG mice. These 24 proteins are involved in a variety of biological processes such as reactive oxygen species metabolism, cytoskeleton organization, fatty acid metabolism, amino acid metabolism and energy metabolism. We determined protein expression levels of the peroxiredoxin (Prx)2, Prx3, myosin light chain 1, stress protein (heat shock protein) 25K, and T-complex protein 1 alpha subunit by western blot analysis. Over-expression of TCTP probably regulates the expression of other proteins which play a pivotal role in a variety of cellular functions in TCTP over-expressing TG mice.  相似文献   

15.
Lim EM  Ehrlich SD  Maguin E 《Electrophoresis》2000,21(12):2557-2561
Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a homofermentative bacterium that produces lactic acid during growth. We adapted the two-dimensional electrophoresis (2-DE) technique to study the response of this bacterium to acidity. De novo protein synthesis was monitored by [35S]methionine labeling of exponentially growing cultures under standard (pH 6) and acidic (pH 4.75) conditions. After 2-DE separation, the protein patterns were compared. The protein spots showing increased radioactivity levels under acid conditions were considered acid-induced. We determined the N-terminal amino acid sequence of three highly induced proteins; comparing these proteins to databases we identified them to be the well-known heat shock proteins GroES, GroEL, and DnaK. Their induction levels were measured and compared. This is the first study by 2-DE of stress response in L. bulgaricus. We established the method and present a protein map which will be useful for future studies.  相似文献   

16.
The isolation, purification, and properties of a putative small heat shock protein (sHsp), named SsHSP14.1, from the hyperthermophilic archaeon Sulfolobus solfataricus have been investigated. The sHsp was successfully expressed and purified from Escherichia coli. In vivo chaperone function of SsHSP14.1 for preventing aggregation of proteins during heating was investigated. It was found that recombinant SsHSP14.1 with a molecular mass of 17.8 kDa prevented E. coli proteins from aggregating in vivo at 50 °C. This result suggested that SsHSP14.1 confers a survival advantage on mesophilic bacteria by preventing protein aggregation at supraoptimal temperatures. In vitro, the purified SsHSP14.1 protein was able to prevent Candida antarctica lipase B from aggregation for up to 60 min at 80 °C. Moreover, the SsHSP14.1 enhanced thermostability of bromelain extending its half-life at 55 °C by 67%.  相似文献   

17.
18.
The tetratricopeptide motif repeat (TPR) is an alpha-helix-turn-alpha-helix motif that typically mediates protein-protein and, in some cases, protein-lipid interactions. Because of its success, this motif has been preserved through evolution and can be identified in proteins of a wide range of functions in lower and higher organisms. The N-terminal region of BUB1, BUBR1, and protein phosphatase 5 (PP5) contains tandem arrangements of the TPR motif. BUB1 and BUBR1 are conserved multidomain protein kinases that play a key role in the mitotic checkpoint, the mechanism that ensures the synchrony of chromosome segregation. PP5 is an enzyme that targets a wide range of protein substrates including single transmembrane receptors and mammalian cryptochromes. The N-terminal TPR domain of PP5 regulates the activity of the C-terminal catalytic domain through direct interaction with protein and lipid molecules. We portray the biophysical and biochemical properties of the tandem arrangements of the TPR motif of BUB1, BUBR1, and PP5 using far-UV spectroscopy, solution X-ray scattering, null ellipsometry, surface rheology measurements, and Brewster angle microscopy (BAM) observations. We show that, despite the low amino acid sequence conservation and different function, the TPR motif repeats of the three proteins exhibit similar interfacial properties including adsorption kinetics, high surface activity, and the formation of stable, rigid films at the air/water interface. Our studies demonstrate that domain amphiphilicity is of higher importance than amino acid sequence specificity in the determination of protein adsorption and interfacial activity.  相似文献   

19.

Background  

A small heat shock protein AgsA was originally isolated from Salmonella enterica serovar Typhimurium. We previously demonstrated that AgsA was an effective chaperone that could reduce the amount of heat-aggregated proteins in an Escherichia coli rpoH mutant. AgsA appeared to promote survival at lethal temperatures by cooperating with other chaperones in vivo. To investigate the aggregation prevention mechanisms of AgsA, we constructed N- or C-terminal truncated mutants and compared their properties with wild type AgsA.  相似文献   

20.
Detection of foldable subunits in proteins is an important approach to understand their evolutions and find building motifs for de novo protein design. Using united-residue model, we simulated the folding of a six-helix protein with a length of 120 amino acids (C-terminal domain of Ku86). The folding behaviors, structural topology and sequence repetition of this protein all suggest that it may have a two-fold quasi-repetition or symmetry in its sequence and structure. Therefore, we simulated the folding of its two halves (1–60 and 61–120 amino acids) and find that they can fold into native conformations independently. It is also found that their folding behaviors are very similar to other three-helix bundles. This suggests that this protein may be divided into two foldable halves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号