首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we examine the effect of product variety on inventory costs in a production–inventory system with finite capacity where products are made to stock and share the same manufacturing facility. The facility incurs a setup time whenever it switches from producing one product type to another. The production facility has a finite production rate and stochastic production times. In order to mitigate the effect of setups, products are produced in batches. In contrast to inventory systems with exogenous lead times, we show that inventory costs increase almost linearly in the number of products. More importantly, we show that the rate of increase is sensitive to system parameters including demand and process variability, demand and capacity levels, and setup times. The effect of these parameters can be counterintuitive. For example, we show that the relative increase in cost due to higher product variety is decreasing in demand and process variability. We also show that it is decreasing in expected production time. On the other hand, we find that the relative cost is increasing in expected setup time, setup time variability and aggregate demand rate. Furthermore, we show that the effect of product variety on optimal base stock levels is not monotonic. We use the model to draw several managerial insights regarding the value of variety-reducing strategies such as product consolidation and delayed differentiation.  相似文献   

2.
One of the most fundamental results in inventory theoryis the optimality of (s, S) policy for inventory systems withsetup cost. This result is established based on a key assumptionof infinite production/ordering capacity. Several studies haveshown that, when there is a finite production/ordering capacity,the optimal policy for the inventory system is very complicatedand indeed, only partial characterization for the optimal policyis possible. In this paper, we consider a continuous reviewinventory system with finite production/ordering capacity andsetup cost, and show that the optimal control policy for thissystem has a very simple structure. We also develop efficientalgorithms to compute the optimal control parameters.  相似文献   

3.
We evaluate the benefits of coordinating capacity and inventory decisions in a make-to-stock production environment. We consider a firm that faces multi-class demand and has additional capacity options that are temporary and randomly available. We formulate the model as a Markov decision process (MDP) and prove that a solution to the optimal joint control problem exists. For several special cases we characterize the structure of the optimal policy. For the general case, however, we show that the optimal policy is state-dependent, and in many instances non-monotone and difficult to implement. Therefore, we consider three pragmatic heuristic policies and assess their performance. We show that the majority of the savings originate from the ability to dynamically adjust capacity, and that a simple heuristic that can adjust production capacity (based on workload fluctuation) but uses a static production/rationing policy can result in significant savings.  相似文献   

4.
In the study of stochastic inventory systems it is generally assumed that the demand epochs are renewable in nature. The present paper deals with a single-item (s, S) inventory model with a finite number of different types of demands, in which the demand epochs form a Markov renewal process. The lead times are exponentially distributed and the demands that occur during stockout periods are not backordered. For this model the transient and limiting inventory level distributions are computed. Also the theory of point processes is used to obtain the mean reorder and shortage rates and their limiting values. For the special case of renewal demands, the problem of minimizing the long-run expected cost rate is analysed.  相似文献   

5.
The aim of the present paper is to make use of the modern theory of point processes to study optimal solutions for single‐item inventory. Demand for goods is assumed to occur according to a compound Poisson process and production occurs continuously and deterministically between times of demand, such that the inventory evolves according to a Markov process in continuous time. The aim is to propose a way of finding optimal production schemes by minimizing a certain expected loss over some finite period. There are holding/production costs depending on the stock level, and random penalty amounts will occur due to excess demand which is assumed backlogged. For simplicity we will not incorporate fixed costs. We give some numerical illustrations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Inventory levels are critical to the operations, management, and capacity decisions of inventory systems but can be difficult to model in heterogeneous, non-stationary throughput systems. The inpatient hospital is a complicated throughput system and, like most inventory systems, hospitals dynamically make managerial decisions based on short term subjective demand predictions. Specifically, short term hospital staffing, resource capacity, and finance decisions are made according to hospital inpatient inventory predictions. Inpatient inventory systems have non-stationary patient arrival and service processes. Previously developed models present poor inventory predictions due to model subjectivity, high model complexity, solely expected value predictions, and assumed stationary arrival and service processes. Also, no models present statistical testing for model significance and quality-of-fit. This paper presents a Markov chain probability model that uses maximum likelihood regression to predict the expectations and discrete distributions of transient inpatient inventories. The approach has a foundation in throughput theory, has low model complexity, and provides statistical significance and quality-of-fit tests unique to this Markov chain. The Markov chain is shown to have superior predictability over Seasonal ARIMA models.  相似文献   

7.
We model a make-to-stock production system that utilizes permanent and contingent capacity to meet non-stationary stochastic demand, where a constant lead time is associated with the acquisition of contingent capacity. We determine the structure of the optimal solution concerning both the operational decisions of integrated inventory and flexible capacity management, and the tactical decision of determining the optimal permanent capacity level. Furthermore, we show that the inventory (either before or after production), the pipeline contingent capacity, the contingent capacity to be ordered, and the permanent capacity are economic substitutes. We also show that the stochastic demand variable and the optimal contingent capacity acquisition decisions are economic complements. Finally, we perform numerical experiments to evaluate the value of utilizing contingent capacity and to study the effects of capacity acquisition lead time, providing useful managerial insights.  相似文献   

8.
In planning and managing production systems, manufacturers have two main strategies for responding to uncertainty: they build inventory to hedge against periods in which the production capacity is not sufficient to satisfy demand, or they temporarily increase the production capacity by “purchasing” extra capacity. We consider the problem of minimizing the long-run average cost of holding inventory and/or purchasing extra capacity for a single facility producing a single part-type and assume that the driving uncertainty is demand fluctuation. We show that the optimal production policy is of a hedging point policy type where two hedging levels are associated with each discrete state of the system: a positive hedging level (inventory target) and a negative one (backlog level below which extra capacity should be purchased). We establish some ordering of the hedging levels, derive equations satisfied by the steady-state probability distribution of the inventory/backlog, and give a more detailed analysis of the optimal control policy in a two state (high and low demand rate) model.  相似文献   

9.
A number of pull production systems reported in the literature are found to be equivalent to a tandemqueue so that existing accurate tandem-queue approximation methods can be used to evaluate such systems. In this study, we consider developing an exact performance evaluation model for a non-tandemqueue equivalent pull production system using discrete-time Markov processes. It is a periodically controlled serial production system in which a single-item is processed at each stage with an exponential processing time in order to satisfy the Poisson finished product demand. The selected performance measures are throughput, inventory levels, machine utilizations and service level of the system. For large systems, which are difficult to evaluate exactly because of large state-spaces involved, we also propose a computationally feasible approximate decomposition technique together with some numerical experimentations.  相似文献   

10.
Variability, in general, has a deteriorating effect on the performance of stochastic inventory systems. In particular, previous results indicate that demand variability causes a performance degradation in terms of inventory related costs when production capacity is unlimited. In order to investigate the effects of demand variability in capacitated production settings, we analyze a make-to-stock queue with general demand arrival times operated according to a base-stock policy. We show that when demand inter-arrival distributions are ordered in a stochastic sense, increased arrival time variability indeed leads to an augmentation of optimal base-stock levels and to a corresponding increase in optimal inventory related costs. We quantify these effects through several numerical examples.  相似文献   

11.
We consider a supply chain in which orders and lead times are linked endogenously, as opposed to assuming lead times are exogenous. This assumption is relevant when a retailer’s orders are produced by a supplier with finite capacity and replenished when the order is completed. The retailer faces demands that are correlated over time – either positively or negatively – which may, for example, be induced by a pricing or promotion policy. The auto-correlation in demand affects the order stream placed by the retailer onto the supplier, and this in turn influences the resulting lead times seen by the retailer. Since these lead times also determine the retailer’s orders and its safety stocks (which the retailer must set to cover lead time demand), there is a mutual dependency between orders and lead times. The inclusion of endogenous lead times and autocorrelated demand represents a better fit with real-life situations. However, it poses some additional methodological issues, compared to assuming exogenous lead times or stationary demand processes that are independent over time. By means of a Markov chain analysis and matrix analytic methods, we develop a procedure to determine the distribution of lead times and inventories, that takes into account the correlation between orders and lead times. Our analysis shows that negative autocorrelation in demand, although more erratic, improves both lead time and inventory performance relative to IID demand. Positive correlation makes matters worse than IID demand. Due to the endogeneity of lead times, these effects are much more pronounced and substantial error may be incurred if this endogeneity is ignored.  相似文献   

12.
In this paper, variable structure control of discrete time systems is considered and the idea of reaching law based sliding mode control is presented. Then the idea is applied to design a control strategy for a class of supply chains with multiple suppliers. In the considered inventory management systems, goods are delivered to a single warehouse with limited capacity. Suppliers themselves have finite manufacturing capabilities, but are also not willing to accept orders of negligible size. The reaching law proposed for such systems ensures full satisfaction of the unpredictable consumers’ demand while adhering to state and input constraints.  相似文献   

13.
We consider a limited-capacity production-inventory system with linear production rate and compound Poisson demand in which both production and demand processes are subject to independently and randomly changing environmental conditions. Assuming that these conditions are represented by two continuous-time homogeneous Markov chains and shortages are lost, we derive the limiting distribution of the inventory level and present some numerical results in terms of the ensuing performance measures.  相似文献   

14.
A one-product one-machine production/inventory problem in which the machine is subject to failure, is considered. The product is stored in an inventory of finite capacity. When the machine is operable, it produces at a rate α greater than the demand rate β, until the inventory becomes full and thereafter it produces at the demand rate. This stepping down of the rate of production results in the under-utilisation of the machine. The under-utilisation of the machine and the demand not met are analysed; special cases are considered. Cost analysis is also indicated.  相似文献   

15.
This paper presents a Markov decision process for managing inventory systems with Markovian customer demand and Markovian product returns. Employing functional analysis, we prove the existence of the optimal replenishment policies for the discounted-cost and average-cost problems when demand, returns, and cost functions are of polynomial growth. Our model generalizes literature results by integrating Markovian demand, Markovian returns, and positive replenishment lead times. In particular, the optimality of the reorder point, order-up-to policies is proved when the order cost consists of fixed setup and proportional cost components and the inventory surplus cost is convex. We then make model extensions to include different cost components and to differentiate returned products from new ones. Finally, we derive managerial insights for running integrated closed-loop supply chains. At the aggregate level, returns reduce effective demand while many structural characteristics of inventory models are intact. A simple heuristic for managing systems with returns is to still utilize literature results without returns, but effective demand is lower than customer demand.  相似文献   

16.
In this study, we develop and analyse an optimal solution procedure for the inventory lot-sizing problem with a general class of time-varying demand functions. The objective of the procedure is to determine the optimal replenishment schedule over a finite planning horizon during which shortages are allowed and are completely backordered. We show that the procedure yields a unique optimal replenishment schedule for both increasing and decreasing demand patterns. We also discuss two particular cases of linear and non-linear demand trend models, and we illustrate the optimal solution procedure with four numerical examples.  相似文献   

17.
As a part of supply chain management literature and practice, it has been recognized that there can be significant gains in integrating inventory and transportation decisions. The problem we tackle here is a common one both in retail and production sectors where several items have to be ordered from a single supplier. We assume that there is a finite planning horizon to make the ordering decisions for the items, and in this finite horizon the retailer or the producer knows the demand of each item in each period. In addition to the inventory holding cost, an item-base fixed cost associated with each item included in the order, and a piecewise linear transportation cost are incurred. We suggest a Lagrangean decomposition based solution procedure for the problem and carry out numerical experiments to analyze the value of integrating inventory and transportation decisions under different scenarios.  相似文献   

18.
Planning horizon is a key issue in production planning. Different from previous approaches based on Markov Decision Processes, we study the planning horizon of capacity planning problems within the framework of stochastic programming. We first consider an infinite horizon stochastic capacity planning model involving a single resource, linear cost structure, and discrete distributions for general stochastic cost and demand data (non-Markovian and non-stationary). We give sufficient conditions for the existence of an optimal solution. Furthermore, we study the monotonicity property of the finite horizon approximation of the original problem. We show that, the optimal objective value and solution of the finite horizon approximation problem will converge to the optimal objective value and solution of the infinite horizon problem, when the time horizon goes to infinity. These convergence results, together with the integrality of decision variables, imply the existence of a planning horizon. We also develop a useful formula to calculate an upper bound on the planning horizon. Then by decomposition, we show the existence of a planning horizon for a class of very general stochastic capacity planning problems, which have complicated decision structure.  相似文献   

19.
In this paper we consider a single item, stochastic demand production/inventory problem where the maximum amount that can be produced (or ordered) in any given period is assumed to be uncertain. Inventory levels are reviewed periodically. The system operates under a stationary modified base stock policy. The intent of our paper is to present a procedure for computing the optimal base stocl level of this policy under expected average cost per period criterion. This procedure would provide guidance as to the appropriate amount of capacity to store in the form of inventory in the face of stochastic demand and uncertain capacity. In achieving this goal, our main contribution is to establish the analogy between the class of base stock production/inventory policies that operate under demand/capacity uncertainty, and the G/G/1 queues and their associated random walks. We also present example derivations for some important capacity distributions.  相似文献   

20.
《Applied Mathematical Modelling》2014,38(11-12):2734-2743
To ease the conflict between quick response and product variety, more and more business models are developed in supply chains. Among these, the form postponement (FP) strategy is an efficient tool and has been widely adopted. To the supply chain with FP strategy, the design mostly involves two problems: determination of customer order decoupling point (CODP) position and semi-finished product inventory control. In this paper, we develop a two-stage tandem queueing network with MAP arrival to address this issue. Particularly, we introduce a Markov arrival process (MAP) to characterize the correlation of the demand. By using of matrix geometric method, we derive several performance measure of the supply chain, such as inventory level and unfill rate. Our numerical examples show that both the variance and the correlation coefficient of the demand lead to more delayed CODP position and more total cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号