首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper surveys recent applications and advances of the constraint programming-based column generation framework, where the master subproblem is solved by traditional OR techniques, while the pricing subproblem is solved by constraint programming (CP). This framework has been introduced to solve crew assignment problems, where complex regulations make the pricing subproblem demanding for traditional techniques, and then it has been applied to other contexts. The main benefits of using CP are the expressiveness of its modeling language and the flexibility of its solvers. Recently, the CP-based column generation framework has been applied to many other problems, ranging from classical combinatorial problems such as graph coloring and two dimensional bin packing, to application oriented problems, such as airline planning and resource allocation in wireless ad hoc networks.   相似文献   

2.
This paper proposes a column generation approach based on the Lagrangean relaxation with clusters to solve the unconstrained binary quadratic programming problem that consists of maximizing a quadratic objective function by the choice of suitable values for binary decision variables. The proposed method treats a mixed binary linear model for the quadratic problem with constraints represented by a graph. This graph is partitioned in clusters of vertices forming sub-problems whose solutions use the dual variables obtained by a coordinator problem. The column generation process presents alternative ways to find upper and lower bounds for the quadratic problem. Computational experiments were performed using hard instances and the proposed method was compared against other methods presenting improved results for most of these instances.  相似文献   

3.
Given an undirected graph with edge costs and both revenues and weights on the vertices, the traveling salesman subtour problem is to find a subtour that includes a depot vertex, satisfies a knapsack constraint on the vertex weights, and that minimizes edge costs minus vertex revenues along the subtour.We propose a decomposition scheme for this problem. It is inspired by the classic side-constrained 1-tree formulation of the traveling salesman problem, and uses stabilized column generation for the solution of the linear programming relaxation. Further, this decomposition procedure is combined with the addition of variable upper bound (VUB) constraints, which improves the linear programming bound. Furthermore, we present a heuristic procedure for finding feasible subtours from solutions to the column generation problems. An extensive experimental analysis of the behavior of the computational scheme is presented.  相似文献   

4.
Constraint Programming Based Column Generation for Crew Assignment   总被引:5,自引:0,他引:5  
Airline crew assignment problems are large-scale optimization problems which can be adequately solved by column generation. The subproblem is typically a so-called constrained shortest path problem and solved by dynamic programming. However, complex airline regulations arising frequently in European airlines cannot be expressed entirely in this framework and limit the use of pure column generation. In this paper, we formulate the subproblem as a constraint satisfaction problem, thus gaining high expressiveness. Each airline regulation is encoded by one or several constraints. An additional constraint which encapsulates a shortest path algorithm for generating columns with negative reduced costs is introduced. This constraint reduces the search space of the subproblem significantly. Resulting domain reductions are propagated to the other constraints which additionally reduces the search space. Numerical results based on data of a large European airline are presented and demonstrate the potential of our approach.  相似文献   

5.
Introducing global constraints in CHIP   总被引:4,自引:0,他引:4  
The purpose of this paper is to show how the introduction of new primitive constraints (e.g., among, diffn, cycle) over finite domains in the constraint logic programming system CHIP result in finding very rapidly good solutions for a large class of difficult sequencing, scheduling, geometrical placement and vehicle routing problems. The among constraint allows us to specify sequencing constraints in a very concise way. For the first time, the diffn constraint allows us to express and to solve directly multi-dimensional placement problems, where one has to consider nonoverlapping constraints between n-dimensional objects (e.g., rectangles, parallelepipeds). The cycle constraint makes it possible to specify a wide range of graph partitioning problems that could not yet be expressed by using current constraint logic programming languages. One of the main advantages of all these new primitives is to take into account more globally a set of elementary constraints. Finally, we point out that all the previous primitive constraints enhance the power of the CHIP system significantly, allowing us to solve real life problems that were not within reach of constraint technology before.  相似文献   

6.
飞机排班是航空运输生产计划的重要环节,对航空公司的正常运营和整体效益有着决定性影响;飞机排班通常构建为大规模整数规划问题,是航空运筹学研究的重要课题,构建的模型属于严重退化的NP-Hard问题.在考虑对多种机型的飞机进行排班时,大大增加了问题的复杂性.针对航空公司实际情况,建立多种机型的飞机排班模型;为实现模型的有效求解,提出了基于约束编程的动态列生成算法;即用约束编程快速求解航班连线(航班串)并计算航班串简约成本,动态选择列集并与限制主问题进行迭代.最后,利用国内某航空公司干线航班网络实际数据验证模型和算法的有效性.  相似文献   

7.
Piecewise linear function (PLF) is an important technique for solving polynomial and/or posynomial programming problems since the problems can be approximately represented by the PLF. The PLF can also be solved using the goal programming (GP) technique by adding appropriate linearization constraints. This paper proposes a modified GP technique to solve PLF with n terms. The proposed method requires only one additional constraint, which is more efficient than some well-known methods such as those proposed by Charnes and Cooper's, and Li. Furthermore, the proposed model (PM) can easily be applied to general polynomial and/or posynomial programming problems.  相似文献   

8.
针对虚拟企业风险规划问题,在分析其各种风险具有随机性的特点的基础上,运用随机规划理论,分别建立风险规划的期望值模型和机会约束规划模型来描述决策者在不同风险偏好下的决策行为。针对所建立的模型,分别设计了基于蒙特卡罗模拟的粒子群优化算法、遗传算法和蚁群算法对其进行求解。仿真分析表明期望值模型较好地描述了风险中性决策者的决策行为,机会约束规划模型随着其偏好系数取值的不同描述了不同风险偏好(风险厌恶、风险中性、风险爱好)决策者的决策行为。通过对三种算法仿真结果的比较分析,表明基于蒙特卡罗模拟的粒子群优化算法在寻优能力、稳定性和收敛速度等方面优于其余两种算法,是解决此类风险规划问题的有效手段。  相似文献   

9.
Probabilistically constrained problems, in which the random variables are finitely distributed, are non-convex in general and hard to solve. The p-efficiency concept has been widely used to develop efficient methods to solve such problems. Those methods require the generation of p-efficient points (pLEPs) and use an enumeration scheme to identify pLEPs. In this paper, we consider a random vector characterized by a finite set of scenarios and generate pLEPs by solving a mixed-integer programming (MIP) problem. We solve this computationally challenging MIP problem with a new mathematical programming framework. It involves solving a series of increasingly tighter outer approximations and employs, as algorithmic techniques, a bundle preprocessing method, strengthening valid inequalities, and a fixing strategy. The method is exact (resp., heuristic) and ensures the generation of pLEPs (resp., quasi pLEPs) if the fixing strategy is not (resp., is) employed, and it can be used to generate multiple pLEPs. To the best of our knowledge, generating a set of pLEPs using an optimization-based approach and developing effective methods for the application of the p-efficiency concept to the random variables described by a finite set of scenarios are novel. We present extensive numerical results that highlight the computational efficiency and effectiveness of the overall framework and of each of the specific algorithmic techniques.  相似文献   

10.
Surrogate constraint methods have been embedded in a variety of mathematical programming applications over the past thirty years, yet their potential uses and underlying principles remain incompletely understood by a large segment of the optimization community. In a number of significant domains of combinatorial optimization, researchers have produced solution strategies without recognizing that they can be derived as special instances of surrogate constraint methods. Once the connection to surrogate constraint ideas is exposed, additional ways to exploit this framework become visible, frequently offering opportunities for improvement.We provide a tutorial on surrogate constraint approaches for optimization in graphs, illustrating the key ideas by reference to independent set and graph coloring problems, including constructions for weighted independent sets which have applications to associated covering and weighted maximum clique problems. In these settings, the surrogate constraints can be generated relative to well-known packing and covering formulations that are convenient for exposing key notions. The surrogate constraint approaches yield widely used heuristics for identifying independent sets as simple special cases, and also afford previously unidentified heuristics that have greater power in these settings. Our tutorial also shows how the use of surrogate constraints can be placed within the context of vocabulary building strategies for independent set and coloring problems, providing a framework for applying surrogate constraints that can be used in other applications.At a higher level, we show how to make use of surrogate constraint information, together with specialized algorithms for solving associated sub-problems, to obtain stronger objective function bounds and improved choice rules for heuristic or exact methods. The theorems that support these developments yield further strategies for exploiting surrogate constraint relaxations, both in graph optimization and integer programming generally.  相似文献   

11.
The paper deals with nonlinear multicommodity flow problems with convex costs. A decomposition method is proposed to solve them. The approach applies a potential reduction algorithm to solve the master problem approximately and a column generation technique to define a sequence of primal linear programming problems. Each subproblem consists of finding a minimum cost flow between an origin and a destination node in an uncapacited network. It is thus formulated as a shortest path problem and solved with Dijkstra’s d-heap algorithm. An implementation is described that takes full advantage of the supersparsity of the network in the linear algebra operations. Computational results show the efficiency of this approach on well-known nondifferentiable problems and also large scale randomly generated problems (up to 1000 arcs and 5000 commodities). This research has been supported by the Fonds National de la Recherche Scientifique Suisse, grant #12-34002.92, NSERC-Canada and FCAR-Quebec. This research was supported by an Obermann fellowship at the Center for Advanced Studies at the University of Iowa.  相似文献   

12.
An effective continuous algorithm is proposed to find approximate solutions of NP-hardmax-cut problems.The algorithm relaxes the max-cut problem into a continuous nonlinearprogramming problem by replacing n discrete constraints in the original problem with onesingle continuous constraint.A feasible direction method is designed to solve the resultingnonlinear programming problem.The method employs only the gradient evaluations ofthe objective function,and no any matrix calculations and no line searches are required.This greatly reduces the calculation cost of the method,and is suitable for the solutionof large size max-cut problems.The convergence properties of the proposed method toKKT points of the nonlinear programming are analyzed.If the solution obtained by theproposed method is a global solution of the nonlinear programming problem,the solutionwill provide an upper bound on the max-cut value.Then an approximate solution to themax-cut problem is generated from the solution of the nonlinear programming and providesa lower bound on the max-cut value.Numerical experiments and comparisons on somemax-cut test problems(small and large size)show that the proposed algorithm is efficientto get the exact solutions for all small test problems and well satisfied solutions for mostof the large size test problems with less calculation costs.  相似文献   

13.
This paper presents constraint programming (CP) as a natural formalism for modelling problems, and as a flexible platform for solving them. CP has a range of techniques for handling constraints including several forms of propagation and tailored algorithms for global constraints. It also allows linear programming to be combined with propagation and novel and varied search techniques which can be easily expressed in CP. The paper describes how CP can be used to exploit linear programming within different kinds of hybrid algorithm. In particular it can enhance techniques such as Lagrangian relaxation, Benders decomposition and column generation.  相似文献   

14.
In this paper, we consider the duty scheduling of sensor activities in wireless sensor networks to maximize the lifetime. We address full target coverage problems contemplating sensors used for sensing data and transmit it to the base station through multi-hop communication as well as sensors used only for communication purposes. Subsets of sensors (also called covers) are generated. Those covers are able to satisfy the coverage requirements as well as the connection to the base station. Thus, maximum lifetime can be obtained by identifying the optimal covers and allocate them an operation time. The problem is solved through a column generation approach decomposed in a master problem used to allocate the optimal time interval during which covers are used and in a pricing subproblem used to identify the covers leading to maximum lifetime. Additionally, Branch-and-Cut based on Benders’ decomposition and constraint programming approaches are used to solve the pricing subproblem. The approach is tested on randomly generated instances. The computational results demonstrate the efficiency of the proposed approach to solve the maximum network lifetime problem in wireless sensor networks with up to 500 sensors.  相似文献   

15.
When vehicle routing problems with additional constraints, such as capacity or time windows, are solved via column generation and branch-and-price, it is common that the pricing subproblem requires the computation of a minimum cost constrained path on a graph with costs on the arcs and prizes on the vertices. A common solution technique for this problem is dynamic programming. In this paper we illustrate how the basic dynamic programming algorithm can be improved by bounded bi-directional search and we experimentally evaluate the effectiveness of the enhancement proposed. We consider as benchmark problems the elementary shortest path problems arising as pricing subproblems in branch-and-price algorithms for the capacitated vehicle routing problem, the vehicle routing problem with distribution and collection and the capacitated vehicle routing problem with time windows.  相似文献   

16.
Constraint integer programming (CIP) is a novel paradigm which integrates constraint programming (CP), mixed integer programming (MIP), and satisfiability (SAT) modeling and solving techniques. In this paper we discuss the software framework and solver SCIP (Solving Constraint Integer Programs), which is free for academic and non-commercial use and can be downloaded in source code. This paper gives an overview of the main design concepts of SCIP and how it can be used to solve constraint integer programs. To illustrate the performance and flexibility of SCIP, we apply it to two different problem classes. First, we consider mixed integer programming and show by computational experiments that SCIP is almost competitive to specialized commercial MIP solvers, even though SCIP supports the more general constraint integer programming paradigm. We develop new ingredients that improve current MIP solving technology. As a second application, we employ SCIP to solve chip design verification problems as they arise in the logic design of integrated circuits. This application goes far beyond traditional MIP solving, as it includes several highly non-linear constraints, which can be handled nicely within the constraint integer programming framework. We show anecdotally how the different solving techniques from MIP, CP, and SAT work together inside SCIP to deal with such constraint classes. Finally, experimental results show that our approach outperforms current state-of-the-art techniques for proving the validity of properties on circuits containing arithmetic.   相似文献   

17.
A relevant financial planning problem is the periodical rebalance of a portfolio of assets such that the portfolio’s total value exhibits certain characteristics. This problem can be modelled using a transition graph G to represent the future state space evolution of the corresponding economy and mathematically formulated as a linear programming problem. We present two different mathematical formulations of the problem. The first considers explicitly the set of the possible scenarios (scenario-based approach), while the second considers implicitly the whole set of scenarios provided by the graph G (graph-based approach). Unfortunately, for both the formulations the size of the corresponding linear programs can be huge even for simple financial problems. However, the graph-based approach seems to be a more powerful model, since it allows to consider a huge number of scenarios in a very compact formulation. The purpose of this paper is to present both heuristic and exact methods for the solution of large-scale multi-period financial planning problems using the graph-based model. In particular, in this paper we propose lower and upper bounds and three exact methods based on column, row and column/row generation, respectively. Since the methods based on column/row generation exploits simultaneously both the primal and the dual structure of the problem we call it Criss-Cross generation method. Computational results are given to prove the effectiveness of the proposed methods.   相似文献   

18.
When a column generation approach is applied to decomposable mixed integer programming problems, it is standard to formulate and solve the master problem as a linear program. Seen in the dual space, this results in the algorithm known in the nonlinear programming community as the cutting-plane algorithm of Kelley and Cheney-Goldstein. However, more stable methods with better theoretical convergence rates are known and have been used as alternatives to this standard. One of them is the bundle method; our aim is to illustrate its differences with Kelley’s method. In the process we review alternative stabilization techniques used in column generation, comparing them from both primal and dual points of view. Numerical comparisons are presented for five applications: cutting stock (which includes bin packing), vertex coloring, capacitated vehicle routing, multi-item lot sizing, and traveling salesman. We also give a sketchy comparison with the volume algorithm. This research has been supported by Inria New Investigation Grant “Convex Optimization and Dantzig-Wolfe Decomposition”.  相似文献   

19.
This paper presents a global optimization approach for solving signomial geometric programming (SGP) problems. We employ an accelerated extended cutting plane (ECP) approach integrated with piecewise linear (PWL) approximations to solve the global optimization of SGP problems. In this approach, we separate the feasible regions determined by the constraints into convex and nonconvex ones in the logarithmic domain. In the nonconvex feasible regions, the corresponding constraint functions are converted into mixed integer linear constraints using PWL approximations, while the other constraints with convex feasible regions are handled by the ECP method. We also use pre-processed initial cuts and batched cuts to accelerate the proposed algorithm. Numerical results show that the proposed approach can solve the global optimization of SGP problems efficiently and effectively.  相似文献   

20.
This paper deals with a portfolio selection problem with fuzzy return rates. A possibilistic mean variance (FMVC) portfolio selection model was proposed. The possibilistic programming problem can be transformed into a linear optimal problem with an additional quadratic constraint by possibilistic theory. For such problems there are no special standard algorithms. We propose a cutting plane algorithm to solve (FMVC). The nonlinear programming problem can be solved by sequence linear programming problem. A numerical example is given to illustrate the behavior of the proposed model and algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号