首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circular dichroism (CD) spectra measured into the vacuum UV region provide information necessary for this technique to fulfill its potential. In the case of proteins, CD spectra measured to 184 nm or below can be analyzed for secondary structure: generalized inverses make such analyses particularly simple. Generalized inverses for α-helix, anti-parallel β-sheet, parallel β-sheet, β-turn, and "other" structures are given in tabular form. When the dot product of each inverse is taken with the digitized spectrum of a protein, the amount of corresponding secondary structure is predicted. However, protein CD spectra truncated above 184 nm give too little information to give reliable analyses. Furthermore, adding constraints only complicates this problem because unreliable analyses now appear good.  相似文献   

2.
We have investigated the CD spectra of a series of enantiomerically pure heterobimetallic helicates, Lambda,Lambda-[LnCr(1)(3)](6+) (Ln = Eu, Gd, Tb), which contain segmental di-imine ligands. For the mononuclear precursor of these helicates, Lambda-[Cr(1)(3)](3+), a positive exciton couplet was observed around 330 nm, as expected for a tris(di-imine) complex with this absolute configuration. The titration of Ln(III) ions into a solution of this complex leads to the formation of Lambda,Lambda-[LnCr(1)(3)](6+). During this process, the CD signal was observed to invert to give a signal which was negative at lower energies. We investigated the observed changes in the CD spectra using a ZINDO-based computational method which we have previously developed. We were able to show that the exciton coupling of the chromophores coordinated to the Cr and Ln ions give rise to CD signals of opposite phase, despite having the same nominal absolute configuration. Exciton coupling between chromophores located on different metal centers ("internuclear" exciton coupling) is also predicted to have a significant impact on the observed spectrum. We were able to "deconstruct" the observed CD spectra into a set of competing exciton coupling effects and show that the sign of these spectra does not correlate with the absolute configuration of the individual metal centers.  相似文献   

3.
Both far‐ and near‐UV electronic circular dichroism (ECD) spectra have bands sensitive to thermal unfolding of Trp and Tyr residues containing proteins. Beside spectral changes at 222 nm reporting secondary structural variations (far‐UV range), Lb bands (near‐UV range) are applicable as 3D‐fold sensors of protein's core structure. In this study we show that both Lb(Tyr) and Lb(Trp) ECD bands could be used as sensors of fold compactness. ECD is a relative method and thus requires NMR referencing and cross‐validation, also provided here. The ensemble of 204 ECD spectra of Trp‐cage miniproteins is analysed as a training set for “calibrating” Trp?Tyr folded systems of known NMR structure. While in the far‐UV ECD spectra changes are linear as a function of the temperature, near‐UV ECD data indicate a non‐linear and thus, cooperative unfolding mechanism of these proteins. Ensemble of ECD spectra deconvoluted gives both conformational weights and insight to a protein folding?unfolding mechanism. We found that the Lb293 band is reporting on the 3D‐structure compactness. In addition, the pure near‐UV ECD spectrum of the unfolded state is described here for the first time. Thus, ECD folding information now validated can be applied with confidence in a large thermal window (5≤T≤85 °C) compared to NMR for studying the unfolding of Trp?Tyr residue pairs. In conclusion, folding propensities of important proteins (RNA polymerase II, ubiquitin protein ligase, tryptase‐inhibitor etc.) can now be analysed with higher confidence.  相似文献   

4.
利用PPP-SCF-CI-DV量子化学程序拟合胆红素以及胆汁酸盐-胆红素水溶液的UV和CD谱, 借以研究胆红素及其与胆汁酸盐复合物的构象性质。发现胆红素与胆汁酸盐作用时, 两个双吡咯生色团的扭角由104°变成112°, 仍保持形成分子内氢键的状态, 其UV及CD谱两个吸收峰间隔的增宽, 主要是胆红素的一侧双吡咯生色团与胆汁酸盐呈疏水性结合的原故; 二羟基和三羟基胆汁酸盐所形成的二元复合物园二色谱的差别, 是胆红素的对映选择性结合造成的。  相似文献   

5.
To explore the photophysics of platinum acetylide chromophores with strong two-photon absorption cross-sections, we have investigated the synthesis and spectroscopic characterization of a series of platinum acetylide complexes that feature highly pi-conjugated ligands substituted with pi-donor or -acceptor moieties. The molecules (numbered 1-4) considered in the present work are analogs of bis(phenylethynyl)bis(tributylphosphine)platinum(II) complexes. Molecule 1 carries two alkynyl-benzothiazolylfluorene ligands, and molecule 2 has two alkynyl-diphenylaminofluorene ligands bound to the central platinum atom. Compounds 3 and 4 possess two dihexylaminophenyl substituents at their ends and differ by the number of platinum atoms in the oligomer "core" (one vs two in 3 and 4, respectively). The ligands have strong effective two-photon absorption cross-sections, while the heavy metal platinum centers give rise to efficient intersystem crossing to long-lived triplet states. Ultrafast transient absorption and emission spectra demonstrate that one-photon excitation of the chromophores produces an S1 state delocalized across the two conjugated ligands, with weak (excitonic) coupling through the platinum centers. Intersystem crossing occurs rapidly (Kisc approximately 1011 s-1) to produce the T1 state, which is possibly localized on a single conjugated fluorenyl ligand. The triplet state is strongly absorbing (epsilonTT > 5 x 104 M-1 cm-1), and it is very long-lived (tau > 100 micro s). Femtosecond pulses were used to characterize the two-photon absorption properties of the complexes, and all of the chromophores are relatively efficient two-photon absorbers in the visible and near-infrared region of the spectrum (600-800 nm). The complexes exhibit maximum two-photon absorption at a shorter wavelength than 2lambda for the one-photon band, consistent with the dominant two-photon transition arising from a two-photon-allowed gerade-gerade transition. Nanosecond transient absorption experiments carried out on several of the complexes with excitation at 803 nm confirm that the long-lived triplet state can be produced efficiently via a sequence involving two-photon excitation to produce S1, followed by intersystem crossing to produce T1.  相似文献   

6.
The neutral retinal Schiff base is connected to opsin in UV sensing pigments and in the blue-shifted meta-II signaling state of the rhodopsin photocycle. We have designed and synthesized two model systems for this neutral chromophore and have measured their gas-phase absorption spectra in the electrostatic storage ring ELISA with a photofragmentation technique. By comparison to the absorption spectrum of the protonated retinal Schiff base in vacuo, we found that the blue shift caused by deprotonation of the Schiff base is more than 200 nm. The absorption properties of the UV absorbing proteins are thus largely determined by the intrinsic properties of the chromophore. The effect of approaching a positive charge to the Schiff base was also studied, as well as the susceptibility of the protonated and unprotonated chromophores to experience spectral shifts in different solvents.  相似文献   

7.
Two X-type chromophores, 2-[4-(4,5-di(4-nitrophenyl) imidazolyl) phenyl]-4,5-di(4-methoxyphenyl)-imidazole (DNPIPDMOPI), 2-[4-(4,5-di(4-nitrophenyl)-imidazolyl) phenyl]-4,5-di(4-aminophenyl)-imidazole (DNPIPDAPI), were synthesized and characterized. The results show that they possess good nonlinearity, considerable blue-shifted absorption (385 nm and 379 nm in THF) and high decomposition temperature (377℃ and 405℃). These mean that the X-type chromophores possess a rather good nonlinearity-transparency-thermal stability trade-off. The multi-step corona-poling technique at elevated temperature and in-situ SHG measurements were used to obtain and evaluate the poled films of these chromophores doped in PMMA. The largest SHG signals appeared at 110-120℃, which are 12.5 pm/V and 16.7 pm/V respectively. The dependence of poling induced orientation stability on temperature was measured by depoling experiments and the results indicate that the poling-induced orientation of the films is stable at about 100℃. Theoretic analyses imply that better orientation stability arises from the X-type structure of chromophore. The X-type chromophore has two crossed intramolecular CT, both βxxx and βxyy can contribute to the second-order susceptibility, and the ratio of the tensorial components (γ = βxyy/βxxx) is about 1/3, so the orientation decay of the films induced by rising temperature will provide a certain compensation for the contribution of βxyy of chromophores.  相似文献   

8.
The absorption and CD spectra of wild-type PYP, apo-PYP, and the mutants, E46Q and M100A, were measured between 250 and 550 nm. At neutral pH, the two very weak absorption bands of wild-type PYP at 307 and 318 nm (epsilon(max) = 600 +/- 100 M(-1) cm(-1) at 318 nm) are associated with quite strong positive CD bands (Deltaepsilon(max) approximately 6.8 M(-1) cm(-1)). Both sets of bands are absent in the apoprotein. On the basis of this evidence, we assign these optical signals to the n --> pi* transition of the oxygen of the carbonyl group of the 4-hydroxycinnamic acid chromophore, which is expected to be electric dipole forbidden but magnetic dipole allowed. The progression of narrow bands at 307 and 318 nm with a shoulder in the CD around 329 nm is due to vibrational fine structure with a frequency of about 1050 +/- 50 cm(-1). This is the carbonyl stretch frequency in the electronically excited state and is well-known from the vibrational structure in the CD spectra of carbonyl compounds. The positive sign of the CD in the near UV is in accordance with the octant rule and the high-resolution X-ray structure, if we assume that the NH group of cysteine 69 to which the carbonyl is hydrogen bonded is the principle perturbant. Similar absorption and CD spectra were observed in the range of 300-340 nm for the mutants E46Q and M100A at neutral pH. Protonation of the trans chromophore by lowering the pH in the dark (without photoisomerization) broadens the 307 and 318 nm CD bands in the mutant E46Q but does not significantly affect their positions or alter their sign. For the long-lived I(2) photointermediate of the mutant M100A with protonated cis chromophore, we observed that the sign of the rotational strength in the 310-320 nm range is negative (i.e., opposite to that in the dark state with trans chromophore). This suggests that the light-induced isomerization of the chromophore, which leads to breaking of the hydrogen bond with the backbone amide of C69, brings the carbonyl into a new protein environment with different asymmetry than in the unbleached protein. The observed change in sign is mainly due to this effect, but a change in chromophore twist may also contribute. Thus, the 318 nm CD signal is a sensitive marker for the environment of the chromophore carbonyl, which samples various environments and configurations during the photocycle.  相似文献   

9.
The quaternary ammonium salt methyl-trioctylammonium chloride enables the transfer of α-chymotrypsin, trypsin, pepsin and glucagone from water to cyclohexane. Reversed micelles, whose polar core solubilizes both protein and water, are probably formed in the apolar phase. The influence of various parameters on the phase transfer (concentration, pH, solvent, temperature, etc.) has been investigated. Absorption, fluorescence and circular dichroism studies of the biopolymers in the cyclohexane system have been carried out. For trypsin and chymotrypsin, the CD. signal in the 200 nm region is very similar in water and in cyclohexane, which suggests that the polypeptide folding is not substantially different in the two phases. The fluorescence quantum yield is always much larger in the cyclohexane phase than in water. The longer wavelength region of the UV. absorption spectrum is slightly red-shifted relative to water, and a band at 225 nm, probably arising from the aromatic chromophore, is apparent in the organic phase. Reasons for these spectral perturbations are discussed. The enzymes transferred from water into cyclohexane phases can be continuously retransferred into a second water phase. The possible relevance of this ‘double transfer’ as a model for the vectorial transport of biopolymers or a separation technique is discussed.  相似文献   

10.
The aim of the study was to bring closer solid state radiation chemistry and ESR spectroscopy by looking for precursors of free radicals which give ESR signals. It has been performed using time-resolved spectrophotometry (pulse radiolysis of the solid state) and diffuse reflection spectrophotometry. Alanine has been especially considered as the most investigated amino acid, important for radiation dosimetry. Absorption of the transient (Λ maximum at 460 nm) is identified as the species during deamination. The stable absorption spectrum with the Λ maximum at 345 nm is due to the same radical as the one detected by ESR. Other amino acids: valine, threonine, glutamine and arginine show similar behaviour: microsecond spectrum of the intermediate appears always at longer wavelenghts. The transient spectrum changes into stable absorption in UV of a lower wavelenght. Along with the optical spectrum, the ESR spectrum appears, of similar stability. Also, other features indicate that the same radical is responsible for both the electronic and ESR spectrum. Some amino acids, like methionine give intensive transient absorption in the microsecond range but no ESR signal, after completion of consecutive fast reactions. In that case any optical absorption is due to the stable product of radiolysis, i.e. compounds with paired electrons only.  相似文献   

11.
Unstabilized polystyrene samples from various producers, as well as carefully purified laboratory polymers, have been investigated by u.v.-absorption, fluorescence, phosphorescence and i.r. spectroscopy. The emission spectra of all samples indicate fluorescent and phosphorescent chromophores. In u.v.-absorption, the chromophores give rise to a long wavelength tail below the absorption edge of the phenyl groups. The phosphorescence spectrum is due to acetophenone-type end-groups of degraded polymer chains. Ultra-violet-fluorescence is due to monomeric styrene and trans-stilbene groups which probably can be formed at head-to-head sites of the polymer. Fluorescence in the blue spectral region may be due to chromophores formed by conjugated double bonds and phenyl groups. The chromophores are present in all commercial samples investigated and, at smaller concentrations, in the laboratory products also.  相似文献   

12.
火菇素酪氨酸微区的研究   总被引:4,自引:0,他引:4  
用紫外差光谱和荧光光谱技术对火菇素的酪氨酸微区进行了研究,结果表明火菇素表现典型的酪氨酸残基紫外275nm吸收峰,ε~m~a~x=20322L·mol^-^1·cm^-^1,紫外差光谱滴定发现,当10.1相似文献   

13.
Vibrational spectra of red fluorescent protein DsRed have been studied for the first time by polarization-sensitive multiplex coherent anti-Stokes Raman scattering at two excitation wavelengths, 545 and 583 nm, in resonance with the absorption bands of the immature "green" and mature "red" protein chromophores. Overall vibrational patterns of both DsRed chromophores were found to be similar to each other and to differ from that of S65T-GFP at pH8. The combined analysis of our CARS data and published structural information suggest that both "green" and "red" DsRed species possess an extended chromophore structure. Consequently, our data suggest that pi-bonding system extension during isomerization around the cis peptide bond between Phe 65 and Gln 66 is a necessary but not sufficient step in DsRed chromophore maturation.  相似文献   

14.
The secondary structure of a water treatment coagulant protein extracted from Moringa oleifera (MO) seeds has been investigated by Fourier transform infrared spectroscopy (FTIR) in the dried state, and by circular dichroism (CD) spectroscopy. The FTIR and CD spectra indicate that the secondary structure of the protein is dominated by alpha-helix. The FTIR spectrum recorded two distinct and strong absorption bands at 1656 cm(-1) and 1542 cm(-1), in the usual range of absorption of helices of proteins. The CD spectrum showed the shape of mainly alpha-helical secondary structure (estimated to be 58+/-4%) characteristic of negative ellipticity bands near 222 nm and 208 nm and a positive band at 192 nm. The beta-sheet structure composition was estimated to be 10+/-3% whereas unordered structures were around 33%. Changes in solution pH affected the protein secondary structure significantly only at pH values above 10, as indicated by CD spectra, whereas ionic strength had minimal effect. CD data also showed that sodium dodecyl sulphate (SDS) interacts with the coagulant protein and modifies the protein conformation. The surfactant-induced conformational change of the coagulant protein was confirmed by quenching of tryptophan fluorescence of the protein.  相似文献   

15.
Chloramphenicol is a low cost, broad spectrum, highly active antibiotic, and widely used in the treatment of serious infections, including typhoid fever and other life-threatening infections of the central nervous system and respiratory tract. The purpose of the present study was to examine the conjugation of chloramphenicol with hemoglobin (Hb) and compared with albumin at molecular level, utilizing fluorescence, UV/vis absorption, circular dichroism (CD) as well as molecular modeling. Fluorescence data indicate that drug bind Hb generate quenching via static mechanism, this corroborates UV/vis absorption measurements that the ground state complex formation with an affinity of 104 M?1, and the driving forces in the Hb-drug complex are hydrophilic interactions and hydrogen bonds, as derived from computational model. The accurate binding site of drug has been identified from the analysis of fluorescence and molecular modeling, α1β2 interface of Hb was assigned to possess high-affinity for drug, which located at the β-37 Trp nearby. The structural investigation of the complexed Hb by synchronous fluorescence, UV/vis absorption, and CD observations revealed some degree of Hb structure unfolding upon complexation. Based on molecular modeling, we can draw the conclusion that the binding affinity of drug with albumin is superior, compared with Hb. These phenomena can provide salient information on the absorption, distribution, pharmacology, and toxicity of chloramphenicol and other drugs which have analogous configuration with chloramphenicol.  相似文献   

16.
Understanding the chromophore maturation process in fluorescent proteins is important for the design of proteins with improved properties. Here, we present the results of electronic structure calculations identifying the nature of a blue intermediate, a key species in the process of the red chromophore formation in DsRed, TagRFP, fluorescent timers, and PAmCherry. The chromophore of the blue intermediate has a structure in which the π-system of the imidazole ring is extended by the acylimine bond, which can be represented by the model N-[(5-hydroxy-1H-imidazole-2yl)methylidene]acetamide (HIMA) compound. Ab initio and QM/MM calculations of the isolated model and protein-bound (mTagBFP) chromophores identify the anionic form of HIMA as the only structure that has absorption that is consistent with the experiment and is stable in the protein binding pocket. The anion and zwitterion are the only protonation forms of HIMA whose absorption (421 and 414 nm, or 2.95 and 3.00 eV) matches the experimental spectrum of the blue form in DsRed (the absorption maximum is 408 nm or 3.04 eV) and mTagBFP (400 nm or 3.10 eV). The QM/MM optimization of the protein-bound anionic form results in a structure that is close to the X-ray one, whereas the zwitterionic chromophore is unstable in the protein binding pocket and undergoes prompt proton transfer. The computed excitation energy of the protein-bound anionic form of the mTagBFP-like chromophore (3.04 eV) agrees with the experimental absorption spectrum of the protein. The DsRed-like chromophore formation in red fluorescent proteins is revisited on the basis of ab initio results and verified by directed mutagenesis revealing a key role of the amino acid residue 70, which is the second after the chromophore tripeptide, in the formation process.  相似文献   

17.
A series of three bis(merocyanine) dyes comprising chromophores of different conjugation lengths has been synthesized and the intramolecular aggregation process was investigated by UV/Vis absorption spectroscopy. The spectral changes observed upon variation of the solvent polarity reveal a folding process resulting in a cofacial π-stack of two chromophores with a decrease of the aggregation tendency with increasing chromophore length and solvent polarity. Solvent-dependent UV/Vis studies of the monomeric reference dyes show a significant increase of the polyene-like character for dyes with longer polymethine chains in nonpolar solvents, which is reversed upon aggregation due to the polarizability effect of the adjacent chromophore within the dye stack. The pronounced hypsochromic shift of the absorption band observed upon aggregation indicates strong coupling of the dyes’ transition dipole moments, which was confirmed by quantum-chemical analysis.  相似文献   

18.
UV absorption spectroscopy is one of the most widely used methods to monitor nucleic acid folding in solution, but the absorption readout is the weighted average contribution of all species present in solution. Mass spectrometry, on the other hand, is able to separate constituents of the solution based on their mass, but methods to probe the structure of each constituent are needed. Here, we explored whether gas-phase UV spectroscopy can give an indication of DNA folding in ions isolated by electrospray mass spectrometry. Model DNA single strands, duplexes, and G-quadruplexes were extracted from solution by electrospray; the anions were stored in a quadrupole ion trap and irradiated by a tunable laser to obtain the UV action spectra of each complex. We found that the duplex and quadruplex spectra are significantly different from the spectra of single strands, thereby suggesting that electronic spectroscopy can be used to probe the DNA gas-phase structure and obtain information about the intrinsic properties of high-order DNA structure.  相似文献   

19.
Eumelanin, the brown-black pigment found in organisms from bacteria to humans, dissipates solar energy and prevents photochemical damage. While the structure of eumelanin is unclear, it is thought to consist of an extremely heterogeneous collection of chromophores that absorb from the UV to the infrared, additively producing its remarkably broad absorption spectrum. However, the chromophores responsible for absorption by eumelanin and their excited state decay pathways remain highly uncertain. Using femtosecond broadband transient absorption spectroscopy, we address the excited state behavior of chromophore subsets that make up a synthetic eumelanin, DOPA melanin, and probe the heterogeneity of its chromophores. Tuning the excitation light over more than an octave from the UV to the visible and probing with the broadest spectral window used to study any form of melanin to date enable the detection of spectral holes with a linewidth of 0.6 eV that track the excitation wavelength. Transient spectral hole burning is a manifestation of extreme chemical heterogeneity, yet exciting these diverse chromophores unexpectedly produces a common photoinduced absorption spectrum and similar kinetics. This common photoresponse is assigned to the ultrafast formation of immobile charge transfer excitons that decay locally and that are formed among graphene-like chromophores in less than 200 fs. Raman spectroscopy reveals that chromophore heterogeneity in DOPA melanin arises from different sized domains of sp2-hybridized carbon and nitrogen atoms. Furthermore, we identify for the first time striking parallels between the excited state dynamics of eumelanin and disordered carbon nanomaterials, suggesting that they share common structural attributes.

Seeing the colors in black: ultrafast transient hole burning spectroscopy reveals the absorption properties of discrete chromophores and their interactions in the skin pigment eumelanin.  相似文献   

20.
Urocanic acid, UCA, is characterized by two electronic transitions in the UV-B (280-320 nm) which comprise its broad absorption spectrum and give rise to wavelength-dependent isomerization quantum yields. The absorption spectrum of UCA extends into the UV-A (320-400 nm). Given the UV-A component of sunlight is significantly greater than the UV-B component it is hypothesized even weak UV-A photochemistry of UCA could be important for in vivo responses to UV radiation. Degenerate pump-probe experiments performed on t-UCA at several wavelengths in the UV-A reveal an excited-state absorption that undergoes a rapid, approximately 1 ps decay. Photoacoustic experiments performed on both the cis and trans isomers reveal the formation of a long-lived intermediate following UV-A excitation. The efficiency and action spectra for this latter photoactive process are presented and are similar for both isomers of UCA. Cholesterol hydroperoxide assays designed to investigate the nature of the UV-A photoreactivity of t-UCA confirm the production of reactive oxygen species. The bimolecular rate constant for the quenching of singlet oxygen by t-UCA is determined to be 3.5 x 10(6) M(-1) s(-1). Taking into consideration recent theoretical calculations and jet expansion studies of the electronic structure of gas-phase t-UCA, a model is proposed to explain the isomerization and photoreactivity of t-UCA in solution over the UV-A region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号