首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We designed and implemented an algorithm to solve the continuos right hand side multiparametric Integer Linear Programming (ILP) problem, that is to solve a family of ILP problems in which the problems are related by having identical objective and matrix coefficients. Our algorithm works by choosing an appropiate finite sequence of nonparametric Mixed Integer Linear Programming (MILP) problems in order to obtain a complete multiparametrical analysis. The algorithm may be implemented by using any software capable of solving MILP problems.  相似文献   

2.
We propose an Integer Linear Programming (ILP) approach for solving integer programs with bilinear objectives and linear constraints. Our approach is based on finding upper and lower bounds for the integer ensembles in the bilinear objective function, and using the bounds to obtain a tight ILP reformulation of the original problem, which can then be solved efficiently. Numerical experiments suggest that the proposed approach outperforms a latest iterative ILP approach, with notable reductions in the average solution time.  相似文献   

3.
The Balanced Academic Curriculum Problem (BACP) consists in assigning courses to teaching terms satisfying prerequisites and balancing the credit course load within each term. The BACP is part of the CSPLib with three benchmark instances, but its formulation is simpler than the problem solved in practice by universities. In this article, we introduce a generalized version of the problem that takes different curricula and professor preferences into account, and we provide a set of real-life problem instances arisen at University of Udine. Since the existing formulation based on a min–max objective function does not balance effectively the credit load for the new instances, we also propose alternative objective functions. Whereas all the CSPLib instances are efficiently solved with Integer Linear Programming (ILP) state-of-the-art solvers, our new set of real-life instances turns out to be much more challenging and still intractable for ILP solvers. Therefore, we have designed, implemented, and analyzed heuristics based on local search. We have collected computational results on all the new instances with the proposed approaches and assessed the quality of solutions with respect to the lower bounds found by ILP on a relaxed and decomposed problem. Results show that a selected heuristic finds solutions of quality at 9%–60% distance from the lower bound. We make all data publicly available, in order to stimulate further research on this problem.  相似文献   

4.
We introduce a new Integer Linear Programming (ILP) approach for solving Integer Programming (IP) problems with bilinear objectives and linear constraints. The approach relies on a series of ILP approximations of the bilinear IP. We compare this approach with standard linearization techniques on random instances and a set of real-world product bundling problems.  相似文献   

5.
This paper applies algorithms integrating Integer Programming (IP) and Constraint Programming (CP) to the Mutually Orthogonal Latin Squares (MOLS) problem. We investigate the behaviour of these algorithms against traditional IP and CP schemes. Computational results are obtained with respect to various aspects of the algorithms, using instances of the 2 MOLS and 3 MOLS problems. The benefits of integrating IP with CP on this feasibility problem are clearly exhibited, especially in large problem instances.  相似文献   

6.
Robustness is about reducing the feasible set of a given nominal optimization problem by cutting ??risky?? solutions away. To this end, the most popular approach in the literature is to extend the nominal model with a polynomial number of additional variables and constraints, so as to obtain its robust counterpart. Robustness can also be enforced by adding a possibly exponential family of cutting planes, which typically leads to an exponential formulation where cuts have to be generated at run time. Both approaches have pros and cons, and it is not clear which is the best one when approaching a specific problem. In this paper we computationally compare the two options on some prototype problems with different characteristics. We first address robust optimization à la Bertsimas and Sim for linear programs, and show through computational experiments that a considerable speedup (up to 2 orders of magnitude) can be achieved by exploiting a dynamic cut generation scheme. For integer linear problems, instead, the compact formulation exhibits a typically better performance. We then move to a probabilistic setting and introduce the uncertain set covering problem where each column has a certain probability of disappearing, and each row has to be covered with high probability. A related uncertain graph connectivity problem is also investigated, where edges have a certain probability of failure. For both problems, compact ILP models and cutting plane solution schemes are presented and compared through extensive computational tests. The outcome is that a compact ILP formulation (if available) can be preferable because it allows for a better use of the rich arsenal of preprocessing/cut generation tools available in modern ILP solvers. For the cases where such a compact ILP formulation is not available, as in the uncertain connectivity problem, we propose a restart solution strategy and computationally show its practical effectiveness.  相似文献   

7.
We designed and implemented an algorithm to solve the continuous right-hand side parametric 0–1-Integer Linear Programming (ILP) problem, that is to solve a family of 0–1-ILP problems in which the problems are related by having identical objective and matrix coefficients. Our algorithm works by choosing an appropiate finite sequence of non-parametric 0–1-Mixed Integer Linear Programming (MILP) problems in order to obtain a complete parametrical analysis. The algorithm may be implemented by using any software capable of solving MILP problems.  相似文献   

8.
The Airline Crew Assignment Problem (ACA) consists of assigning lines of work to a set of crew members such that a set of activities is partitioned and the costs for that assignment are minimized. Especially for European airline companies, complex constraints defining the feasibility of a line of work have to be respected. We developed two different algorithms to tackle the large scale optimization problem of Airline Crew Assignment. The first is an application of the Constraint Programming (CP) based Column Generation Framework. The second approach performs a CP based heuristic tree search. We present how both algorithms can be coupled to overcome their inherent weaknesses by integrating methods from Constraint Programming and Operations Research. Numerical results show the superiority of the hybrid algorithm in comparison to CP based tree search and column generation alone.  相似文献   

9.
Optimizing over the first Chvátal closure   总被引:3,自引:2,他引:1  
How difficult is, in practice, to optimize exactly over the first Chvátal closure of a generic ILP? Which fraction of the integrality gap can be closed this way, e.g., for some hard problems in the MIPLIB library? Can the first-closure optimization be useful as a research (off-line) tool to guess the structure of some relevant classes of inequalities, when a specific combinatorial problem is addressed? In this paper we give answers to the above questions, based on an extensive computational analysis. Our approach is to model the rank-1 Chvátal-Gomory separation problem, which is known to be NP-hard, through a MIP model, which is then solved through a general-purpose MIP solver. As far as we know, this approach was never implemented and evaluated computationally by previous authors, though it gives a very useful separation tool for general ILP problems. We report the optimal value over the first Chvátal closure for a set of ILP problems from MIPLIB 3.0 and 2003. We also report, for the first time, the optimal solution of a very hard instance from MIPLIB 2003, namely nsrand-ipx, obtained by using our cut separation procedure to preprocess the original ILP model. Finally, we describe a new class of ATSP facets found with the help of our separation procedure.  相似文献   

10.
The optimal solution set of the interval linear programming problems   总被引:1,自引:0,他引:1  
Several methods exist for solving the interval linear programming (ILP) problem. In most of these methods, we can only obtain the optimal value of the objective function of the ILP problem. In this paper we determine the optimal solution set of the ILP as the intersection of some regions, by the best and the worst case (BWC) methods, when the feasible solution components of the best problem are positive. First, we convert the ILP problem to the convex combination problem by coefficients 0 ≤ λ j , μ ij , μ i  ≤ 1, for i = 1, 2, . . . , m and j = 1, 2, . . . , n. If for each i, jμ ij  = μ i  = λ j  = 0, then the best problem has been obtained (in case of minimization problem). We move from the best problem towards the worst problem by tiny variations of λ j μ ij and μ i from 0 to 1. Then we solve each of the obtained problems. All of the optimal solutions form a region that we call the optimal solution set of the ILP. Our aim is to determine this optimal solution set by the best and the worst problem constraints. We show that some theorems to validity of this optimal solution set.  相似文献   

11.
The multiple-choice multidimensional knapsack problem (MMKP) is a well-known NP-hard combinatorial optimization problem with a number of important applications. In this paper, we present a “reduce and solve” heuristic approach which combines problem reduction techniques with an Integer Linear Programming (ILP) solver (CPLEX). The key ingredient of the proposed approach is a set of group fixing and variable fixing rules. These fixing rules rely mainly on information from the linear relaxation of the given problem and aim to generate reduced critical subproblem to be solved by the ILP solver. Additional strategies are used to explore the space of the reduced problems. Extensive experimental studies over two sets of 37 MMKP benchmark instances in the literature show that our approach competes favorably with the most recent state-of-the-art algorithms. In particular, for the set of 27 conventional benchmarks, the proposed approach finds an improved best lower bound for 11 instances and as a by-product improves all the previous best upper bounds. For the 10 additional instances with irregular structures, the method improves 7 best known results.  相似文献   

12.
13.
This paper is aimed at researchers and practitioners in Operational Research who are interested in the new field of Constraint Programming/Constraint Logic Programming. Due to differing terminology and problem representation they might have found it difficult to access the field. The paper focuses on discrete optimisation problems. The first part lists frequently used terms in Constraint Programming (CP), contrasting them with their counterparts in Mathematical Programming (MP). The second part explains some of the most important concepts and techniques in more detail by comparing the CP and MP implementations of a small example problem, the ‘Change Problem’. It includes an overview of the respective results. In conclusion a more generalised comparison of CP and MP techniques is given.  相似文献   

14.
We address the problem of finding location equilibria of a location-price game where firms first select their locations and then set delivered prices in order to maximize their profits. Assuming that firms set the equilibrium prices in the second stage, the game is reduced to a location game for which a global minimizer of the social cost is a location equilibrium if demand is completely inelastic and marginal production cost is constant. The problem of social cost minimization is studied for both a network and a discrete location space. A node optimality property when the location space is a network is shown and an Integer Linear Programming (ILP) formulation is obtained to minimize the social cost. It is also shown that multiple location equilibria can be found if marginal delivered costs are equal for all competitors. Two ILP formulations are given to select one of such equilibria that take into account the aggregated profit and an equity criterion, respectively. An illustrative example with real data is solved and some conclusions are presented.  相似文献   

15.
Constraint Programming (CP) has been successful in a number of combinatorial search and discrete optimisation problems. Yet other more traditional approaches, such as Integer Programming (IP), can still give a better performance on the same problem types. Central to IP's success is its reliance on a fast Linear Programming (LP) solver providing solutions during the search to the corresponding relaxed problems. These solutions are used to guide the search within IP as well as a means of detecting infeasibility and integrality. This paper shows that there is scope also to include LP within the CP framework, in order to similarly guide the CP search. The problems examined here are one for which CP on its own had proved markedly inferior to IP. Hence a hybrid solver based on the CP search and using an LP solver is configured and run on these problems. The outcome shows that using the LP solver within the CP search is a valuable addition to the available search strategies. An improved performance over the CP-only strategies is obtained and, further, comparable results are obtained to those from IP. Overall, CP+LP can be considered as a more robust approach than either CP or IP on their own on a variety of combinatorial search problems.  相似文献   

16.
This paper studies a facility selection problem which is generalised from the design of a mail sorting system with multiple input and output. The problem is formulated as a 0–1 integer linear programming (ILP) problem with logical constraints. We show how the logical constraints can be embedded into a ILP model. We compare three strategies for handling logical relations: (1) explicitly as added linear constraints; (2) implicitly as symbolic constraints; and (3) a combination of the two. The effectiveness of computations under different strategies are shown.  相似文献   

17.
A scheduling problem with piecewise linear (PL) optimization extends conventional scheduling by imposing a conjunction of combinatorial PL constraints involving the objective function variables. To solve this problem, this paper presents a hybrid algorithm where Constraint Programming (CP) search is supported and driven by a (integer) linear programming solver running on a well-controlled subproblem which is dynamically tightened. The paper discusses and compares different ways of decomposing the problem constraints between the CP search and the solver. We show how the subproblem structure and the piecewise linearity are exploited by the search.  相似文献   

18.
In this paper, an integrated due date assignment and production and batch delivery scheduling problem for make-to-order production system and multiple customers is addressed. Consider a supply chain scheduling problem in which n orders (jobs) have to be scheduled on a single machine and delivered to K customers or to other machines for further processing in batches. A common due date is assigned to all the jobs of each customer and the number of jobs in delivery batches is constrained by the batch size. The objective is to minimize the sum of the total weighted number of tardy jobs, the total due date assignment costs and the total batch delivery costs. The problem is NP-hard. We formulate the problem as an Integer Programming (IP) model. Also, in this paper, a Heuristic Algorithm (HA) and a Branch and Bound (B&B) method for solving this problem are presented. Computational tests are used to demonstrate the efficiency of the developed methods.  相似文献   

19.
A column generation approach to train timetabling on a corridor   总被引:1,自引:1,他引:0  
We propose heuristic and exact algorithms for the (periodic and non-periodic) train timetabling problem on a corridor that are based on the solution of the LP relaxation of an ILP formulation in which each variable corresponds to a full timetable for a train. This is in contrast with previous approaches to the same problem, which were based on ILP formulations in which each variable is associated with a departure and/or arrival of a train at a specific station in a specific time instant, whose LP relaxation is too expensive to be solved exactly. Experimental results on real-world instances of the problem show that the proposed approach is capable of producing heuristic solutions of better quality than those obtained by these previous approaches, and of solving some small-size instances to proven optimality.   相似文献   

20.
Selecting optimal location is a key decision problem in business and engineering. This research focuses to develop mathematical models for a special type of location problems called grid-based location problems. It uses a real-world problem of placing lights in a park to minimize the amount of darkness and excess supply. The non-linear nature of the supply function (arising from the light physics) and heterogeneous demand distribution make this decision problem truly intractable to solve. We develop ILP models that are designed to provide the optimal solution for the light post problem: the total number of light posts, the location of each light post, and their capacities (i.e., brightness). Finally, the ILP models are implemented within a standard modeling language and solved with the CPLEX solver. Results show that the ILP models are quite efficient in solving moderately sized problems with a very small optimality gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号