首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamics of the furanose rings in the GCGC moiety of the DNA oligomer [d(G 1A 2T 3A 4 G 5 C 6 G 7 C 8T 9A 10T 11C 12)] 2 are studied by using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs selectively deuterated on the furanose rings of nucleotides within the 5'-GCGC-3' moiety indicated that all of these positions are structurally flexible. The furanose ring within the deoxycytidine that is the methylation target displays the largest-amplitude structural changes according to the observed deuterium NMR line shapes, whereas the furanose rings of nucleotides more remote from the methylation site have less-mobile furanose rings (i.e., with puckering amplitudes < 0.3 A). Previous work has shown that methylation reduces the amplitude of motion in the phosphodiester backbone of the same DNA, and our observations indicate that methylation perturbs backbone dynamics through the furanose ring. These NMR data indicate that the 5'-GCGC-3' is dynamic, with the largest-amplitude motions occurring nearest the methylation site. The inherent flexibility of this moiety in DNA makes the molecule more amenable to the large-amplitude structural rearrangements that must occur when the DNA binds to the HhaI methyltransferase.  相似文献   

2.
Proton-decoupled, partially relaxed, Fourier-transform NMR of 13C in natural abundance was used to determine spin-lattice relaxation times of individual carbons of polyisobutylene, polyacrylonitrile, poly(vinyl chloride), and poly(vinyl alcohol) in solution. It is shown that the relaxation times are independent of the difference in stereochemical configuration. From the values of the nuclear Overhauser enhancement factor it is shown that the relaxation times are independent of the difference in stereochemical configuration. From the values of the nuclear Overhauser enhancement factor it is shown that the excess spin energy from equilibration of all the 13C, even of quaternary carbons, in the polymers dealt with here is transferred to the lattice mainly through 13C-1H dipolar interactions. It is shown that the segmental motions responsible for the spin-lattice relaxation of the polymer skeleton in solution can be described by the isotropic model within a good approximation, except for poly(vinyl alcohol) at low temperature. The activation energies of skeletal and internal methyl motions are estimated from the temperature dependence of the correlation time. Differences in the 13C line widths for individual carbons of polyisobutylene are discussed briefly.  相似文献   

3.
The 13C NMR spin-lattice relaxation times (T1) of anhydroglucose units vary with the number of substituents, and the T1 values of unsubstituted anhydroglucose units of O-carboxymethylcellulose are longer than those of amylose. Those results indicate that in water, the rotational motions of anhydroglucose units of cellulose derivative are quite important local motions contributing to the 13C NMR spin-lattice relaxation, and within a cellulose chain, anhydroglucose units rotate with different degrees of freedom depending on their environment. Moreover, the 13C NMR spin-lattice relaxation data indicate that the mobilities of ionic substituents are dependent on substitution positions as well as their ionic interaction. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
To elucidate the role of secondary structure in the immune response against alpha(2-->8)-linked polysialic acid, the capsular polysaccharide of Group B meningococci, we have investigated its solution dynamics by using specific models of molecular motion and hydrodynamic modeling to interpret experimental NMR data. (13)C-[(1)H] NMR relaxation times and steady-state NOE enhancements were measured for two aqueous solutions of alpha(2-->8)-linked sialic acid polysaccharides. Each contained a unique distribution of polysaccharide chain lengths, with average lengths estimated at 40 or 400 residues. Models for rigid molecule tumbling, including two based on helical conformations proposed for the polysaccharide,(31) could not explain the NMR measurements. In general for these helices, the correlation times for their overall tumbling that best account for the NMR data correspond to polysaccharide chains between 9 and 18 residues in length, far short of the average lengths estimated for either solution. The effects of internal motions incorporated into these helices was modeled with an effective correlation time representing helix tumbling as well as internal motion. This modeling demonstrated that even with extreme amounts of internal motion, "flexible helices" of 25 residues or more still could not produce the NMR measurements. All data are consistent with internal and segmental motions dominating the nuclear magnetic relaxation of the polysaccharide and not molecular tumbling. Statistical distributions of correlation times have been found specifically for the pyranose rings, linkage groups, and methoxy groups that can account for the measured relaxation times and NOE enhancements. The distributions suggest that considerable flexibility attends the polysaccharide in solution, and the ranges of motional frequencies for the linkage groups and pyranose rings are comparable. We conclude that the Group B meningococcal polysaccharide is a random coil chain in solution, and therefore, does not have antigenic epitopes dependent upon a rigid, ordered conformation.  相似文献   

5.
The deuterium spin-lattice relaxation times in (D2) ligands of W, Ru and Os complexes are reviewed and analyzed in terms of the fast internal (D2) motions: free rotation, librations and 180 degrees jumps. The analysis was performed using quadrupolar coupling constant (DQCC) parameters taken from the solid-state 2H NMR spectra and density function theory calculations. It is shown that the calculated DQCC values can be corrected for further use in interpretations of deuterium relaxation times for Ru and Os dihydrogen complexes. The resulting data led to a criterion for using the relaxation data to distinguish fast-spinning dihydrogen ligands. It is shown that the principal components of electric field gradient tensors at D in the dihydrogen ligands are oriented closer to M-D directions.  相似文献   

6.
The first translational self-diffusion NMR measurements in the isotropic phase of banana-shaped liquid crystals are reported. In this paper, two banana-shaped mesogens, having a similar molecular structure and showing a nematic phase, have been investigated by means of translational self-diffusion NMR, (2)H NMR spin-spin and (1)H NMR spin-lattice relaxation measurements in the isotropic phase. While (1)H diffusion and (2)H relaxation times reveal a peculiar slow dynamic behaviour of banana-shaped mesogens compared with calamitic mesogens, the (1)H relaxation times seem to be affected by fast dynamics only. The origin of these dynamic features is discussed in terms of overall and internal molecular motions, in the frame of recent speculations concerning the formation of molecular clusters or aggregates in the isotropic phase of banana-shaped liquid crystals.  相似文献   

7.
Poly(dicarbon monofluoride) (C2F)n was studied by electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (NMR). The effects of physisorbed oxygen on the EPR and NMR relaxation were underlined and extrapolated to poly(carbon monofluoride) (CF)n and semi-covalent graphite fluoride prepared at room temperature. Physisorbed oxygen molecules are shown to be an important mechanism of both electronic and nuclear relaxations, resulting in apparent spin-lattice relaxation time and line width during NMR and EPR measurements, respectively. The effect of paramagnetic centers on the 19F spin-lattice relaxation was underlined in accordance with the high electron spin density determined by EPR. 19F magic angle spinning (MAS) NMR, 13C MAS NMR, and 13C MAS NMR with 19F to 13C cross polarization (CP) underline the presence of two types of carbon atoms, both sp3 hybridized: some covalently bonded to fluorine and the others linked exclusively to carbon atoms. Finally, a C-F bond length of 0.138 +/- 0.002 nm has been determined thanks to the re-introduction of dipolar coupling using cross polarization.  相似文献   

8.
The dynamics of relaxations and Fries rearrangements in phenol acetates and their acetyl isomers was studied by the NMR relaxation technique in acetone-d 6. The results of 13C and 1H spin-lattice nuclear relaxation measurements show that these experiments can be used for determining the mobility and activation energies of the molecular motions of compounds in different systems.  相似文献   

9.
Elastin is the main structural protein that provides elasticity to various tissues and organs in vertebrates. Molecular motions are believed to play a significant role in its elasticity. We have used solid-state NMR spectroscopy to characterize the dynamics of an elastin-mimetic protein as a function of hydration to better understand the origin of elastin elasticity. Poly(Lys-25), [(VPGVG)(4)(VPGKG)](39), has a repeat sequence common to natural elastin. (13)C cross-polarization and direct polarization spectra at various hydration levels indicate that water enhances the protein motion in a non-uniform manner. Below 20% hydration, the backbone motion increases only slightly whereas above 30% hydration, both the backbone and the side-chains undergo large-amplitude motions. The motional amplitudes are extracted from (13)C-(1)H and (1)H-(1)H dipolar couplings using 2D isotropic-anisotropic correlation experiments. The root mean square fluctuation angles are found to be 11-18 degrees in the dry protein and 16-21 degrees in the 20% hydrated protein. Dramatically, the amplitudes increase to near isotropic at 30% hydration. Field-dependent (1)H rotating-frame spin-lattice relaxation times (T(1rho)) indicate that significant motions occur on the microsecond time-scale (1.2-2.3 micros). The large-amplitude and low-frequency motion of poly(Lys-25) at relatively mild hydration indicates that the conformational entropy of the protein in the relaxed state contributes significantly to the elasticity.  相似文献   

10.
Hypercrosslinked polystyrenes, synthesized by reaction of linear or lightly crosslinked polystyrene with chloromethyl methyl ether (CME) and a Lewis acid in a good solvent, swell even in nonsolvents for polystyrene. Structures and dynamics of hypercrosslinked polystyrenes in both dry solid and solvent-swollen gel states have been determined by 13C-NMR spectroscopy. Deconvolution of 13C solid-state CP/MAS spectra gave the relative numbers of quaternary carbon atoms in monosubstituted and disubstituted benzenes. A typical sample, crosslinked by reaction of a mixture containing 0.5 mol of CME per mol of repeat units, contains 35% of unreacted and 65% of crosslinked aromatic rings, and no residual chloromethyl groups. Gels swollen in CDCl3 and in CH3OH have residual static dipolar interactions enabling crosspolarization and require magic angle spinning (MAS) and high power 1H decoupling to reduce chemical shift anisotropy from ∼ 104 Hz to ∼ 103 Hz. A single proton spin-lattice relaxation time in the rotating frame measured from all peaks in the 13C spectra of dry samples indicates homogeneity on a nanometer scale. Proton NMR line widths indicate no substantial molecular motions in a dry hypercrosslinked polystyrene up to at least 200°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 695–701, 1997  相似文献   

11.
用1H NMR自扩散系数,核弛豫和二维NOESY谱研究了新合成苄醚树枝体与丙烯酸杂化嵌段共聚物在水溶液中生成胶团的动态行为.体系中苄醚树枝体与丙烯酸杂化嵌段共聚物的各1H核的自旋-晶格弛豫时间(T1)、自旋-自旋弛豫时间(T2)、自扩散系数和二维NOESY中的交叉峰证明苄醚树枝体与丙烯酸杂化嵌段共聚物在水溶液中形成自聚集,且与不同浓度下聚集体有差别.  相似文献   

12.
Carbon-13 NMR spectra of solid polycrystalline bicyclo[3.3.1]nonan-9-one and adamantanone have been measured at 315K. The relatively narrow 13C linewidths observed for these solids, together with measured spin-lattice relaxation times, indicate that both these solids are orientationally disordered. Observed 13C chemical shifts of solid bicyclo[3.3.1]nonan-9-one indicate a twin-chair conformation for the two cyclohexanone rings.  相似文献   

13.
Determination of the conformational flexibility of the furanose ring is of vital importance in understanding the structure of DNA. In this work we have applied a model of furanose ring motion to the analysis of deuterium line shape data obtained from sugar rings in solid hydrated DNA. The model describes the angular trajectories of the atoms in the furanose ring in terms of pseudorotation puckering amplitude (q) and the pseudorotation puckering phase phi. Fixing q, the motion is thus treated as Brownian diffusion through an angular-dependent potential U(phi). We have simulated numerous line shapes varying the adjustable parameters, including the diffusion coefficient D, pseudorotation puckering amplitude q, and the form of the potential U(phi). We have used several forms of the potential, including equal double-well potentials, unequal double-well potentials, and a potential truncated to "second order" in the Fourier series. To date, we have obtained best simulations for both equilibrium and nonequilibrium (partially relaxed) solid-state deuterium NMR line shapes for the sample [2' '-2H]-2'-deoxycytidine at the position C3 (underlined) in the DNA sequence [d(CGCGAATTCGCG)]2, using a double-well potential with an equal barrier height of U(0) = 5.5k(B)T ( approximately 3.3 kcal/mol), a puckering amplitude of q = 0.4 A, and a diffusion coefficient characterizing the underlying stochastic jump rate D = 9.9 x 10(8) Hz. Then the rate of flux for the C-D bond over the barrier, i.e., the escape velocity or the overall rate of puckering between modes, was found to be 0.7 x 10(7) Hz.  相似文献   

14.
Using 26 NMR spectrometers, the Research Group on NMR, the Society of Polymer Science, Japan observed the 1H NMR chemical shift, resolution, and signal intensity; 13C NMR chemical shift, resolution, and signal intensity; the effect from initiator fragment signal; 1H spin-lattice relaxation times; 13C spin-lattice relaxation times; and 13C nuclear Overhauser enhancement of radically polymerized poly(methyl methacrylate). Excellent reliability was found after comparison between the data from different spectrometers. Molecular motion of this polymer was analyzed with a term of 3τ model.  相似文献   

15.
In this work, the rotational-diffusion coefficients D(parallel) and D(perpendicular) for the ferroelectric smectogen (+)-(S)-4-[4'-(1-methylheptyloxy)] biphenyl 4-(10-undecenyloxy)benzoate have been studied by means of 2H NMR spectroscopy in the smectic C phase, using a new theoretical approach (Domenici,V.; Geppi, M.; Veracini, C. A. Chem. Phys. Lett. 2003, 382, 518). The analysis of spin-lattice relaxation times has been performed in terms of the diffusional constant and the activation energy of the internal and overall molecular-reorientational motions, and the results are compared to the smectic A (SmA) phase. Moreover, from the 2H NMR data in the SmA phase, the dielectric permittivity and the dielectric relaxation time functions are investigated using a theoretical approach. The longitudinal and transverse components of the real Rchigammaomega and imaginary chigammaomega (gamma = parallel, perpendicular) parts of the complex susceptibility tensor and the nematic-like rotational-viscosity coefficients, lambda2 and lambda5, are calculated.  相似文献   

16.
Single-pulse 13C NMR spectra and spin-lattice relaxation times T1(1H), detected indirectly via 13C carbons, and T1(13C) were measured at 31°C for virgin pelletized and annealed polylactic acid (PLA) samples using the magic-angle spinning technique. The structural relaxation resulting in more regular crystals with narrower conformation distribution and increase in the lamellae thickness and crystallinity brought about by annealing at 100°C was deduced from the narrowing of the 13C NMR lines and proton spin-lattice relaxation times T1(1H). The spin-lattice relaxation times T1(13C) related to the respective carbons of the α-polymorph of PLA are also discussed in the study.  相似文献   

17.
本文综述了近年来固体核磁弛豫方法在高分子研究中的应用,共分5个部分加以介绍:(1)自旋-晶格弛豫过程;(2)在旋转坐标系中的^13C自旋-晶格弛豫过程;(3)交叉极化速率和旋转坐标系中的^1H自旋-晶格弛豫过程;(4)自旋-自旋弛豫过程;(5)动态结构导致的线形变化。本文主要讨论磁性核的各种弛豫过程以及它们与分子结构和分子运动的关系。  相似文献   

18.
The copper(II) complex of lincomycin in water solution at pH = 7.15 was characterized by (1)H and (13)C NMR and UV-vis spectroscopy. A 1:1 complex is formed in these conditions. The temperature dependence of spin-lattice relaxation rates was measured, showing that all protons behave in a similar fashion and slow exchange conditions prevail. The spin-lattice relaxation rate enhancements were interpreted by the Solomon-Bloembergen-Morgan theory. Reorientational dynamics of the complex was approximated by evaluating the motional correlation time of free lincomycin in water solution. The observed proton and carbon relaxation rate enhancements allowed us to calculate copper-proton and copper-carbon distances that were used for building a molecular model of the complex. The obtained data provide an interpretation of the relatively high stability constant.  相似文献   

19.
Abstract

Cross-polarization, 13C rotating frame spin-lattice relaxation and C laboratory frame spin-lattice relaxation processes have been studied for different cellulose samples by CP/MAS 13C NMR spectroscopy. It was found that the CP process can be described by a simple thermodynamic model and relative intensities of the respective resonance lines are consistent with the atomic ratios for the spectra obtained at a contact time of about 1 ms. The observed rotating frame spin-lattice relaxation times TC 10 were dominantly dependent on the time constant TD CH by which 13C nuclei were coupled to the 1H dipolar spin system. It was, therefore, impossible to obtain information about molecular  相似文献   

20.
A mixed-acid monounsaturated lecithin, 1-palmitoyl-2-oleyl-sn-glycero-3-phosphorylcholine (POL), has been synthesized by phospholipase A2 digestion of 1,2 dipalmitoyl-sn-glycero-3-phosphorylcholine followed by reacylation of the lysolecithin with oleic anhydride. 1H (90 MHz) and 13C (25.2 MHz) NMR spectra of POL in CDCl3 solution and in sonicated dispersions in 2H2O have been obtained, and spin-lattice relaxation times measured. The relaxation times were characteristic of the type of structure formed and reflect molecular motion within the lecithin molecule in each structure. In both systems the spin-lattice relaxation times increase along the alkyl chains towards the terminal methyl group, showing a corresponding increase in the chain molecular motion, although there are significant differences in the gradation of the changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号