首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diastereoselective copper-catalyzed alkene aziridination has been investigated using chiral nitrenes generated from sulfonimidamides in the presence of an iodine(III) oxidant. Starting from a stoichiometric amount of the substrates, the corresponding aziridines were isolated with excellent yields of up to 96%. Good levels of asymmetric induction were obtained in the case of electron-poor olefins, with an optimal de of 94% being reached starting from tert-butyl acrylate. Matching and mismatching effects were also observed upon the use of chiral copper catalysts for the aziridination of styrene.  相似文献   

2.
Alkenes and arenes represent two classes of feedstock compounds whose union has fundamental importance to synthetic organic chemistry. We report a new approach to alkene arylation using diaryliodonium salts and Cu catalysis. Using a range of simple alkenes, we have shown that the product outcomes differ significantly from those commonly obtained by the Heck reaction. We have used these insights to develop a number of new tandem and cascade reactions that transform readily available alkenes into complex arylated products that may have broad applications in chemical synthesis.  相似文献   

3.
Aziridines were formed by copper-catalyzed intramolecular nitrene addition to alkenes. The carbamate group was used as the tether between the alkene and the nitrene. Subsequent nucleophilic attack of the aziridine was accomplished using RSH, R2NH, N3-, or ROH as the nucleophile. This addition was found to be regio- and stereoselective. This methodology has been used to demonstrate its utility in the regio- and stereoselective synthesis of a 1,2-diamino-3-hydroxycyclohexane. This substitution pattern is found in natural products such as Tamiflu.  相似文献   

4.
A Cu(I)-catalyzed asymmetric aziridination of styrenes with a chiral N-tosyloxycarbamate has been developed. Double stereodifferentiation was observed and both the N-tosyloxycarbamate substituent and the bis(oxazoline) ligand have a significant effect on the yields and diastereoselectivities. The best results for the aziridination were obtained with electron-deficient styrenes. Subsequent ring-opening reactions of styrene-derived aziridines at the benzylic position were observed with various oxygen and nitrogen nucleophiles under Lewis acid catalysis affording the corresponding products with complete inversion of stereochemistry. The strategy was used to synthesize the β-blocker, (R)-nifenalol.  相似文献   

5.
The rhodium-catalyzed decomposition of N-tosyloxycarbamates to generate metal nitrenes which undergo intramolecular C-H insertion or aziridination reaction is described. Aliphatic N-tosyloxycarbamates produce oxazolidinones with high yields and stereospecificity through insertion in benzylic, tertiary, and secondary C-H bonds. Intramolecular aziridination occurs with allylic N-tosyloxycarbamates to produce aziridines as single diastereomers. The reaction proceeds at room temperature using a rhodium catalyst and an excess of potassium carbonate and does not require the use of strong oxidant, such as hypervalent iodine reagents. A rhodium nitrene species is presumably involved, as both reactions are stereospecific.  相似文献   

6.
Lu J  Jin Y  Liu H  Jiang Y  Fu H 《Organic letters》2011,13(14):3694-3697
A copper-catalyzed aerobic oxidative intramolecular alkene C-H amination has been developed using readily available substituted 3-benzylidene-2-pyridin-2-ylmethyl-2,3-dihydro-isoindol-1-ones as the starting materials, and the corresponding N-heterocycles were obtained in good to excellent yields. This method should provide a new and useful strategy for constructing N-heterocycles.  相似文献   

7.
Enantioselective copper-catalyzed cyclization of γ-alkenylsulfonamides and a δ-alkenylsulfonamide in the presence of a range of vinyl arenes results in variously functionalized 2-substituted chiral nitrogen heterocycles via a formal alkene C-H functionalization process. Application of this reaction to the concise synthesis of a 5-HT(7) receptor antagonist is demonstrated.  相似文献   

8.
Fused-ring and bridged-ring tetrahydrofuran scaffolds are found in a number of natural products and biologically active compounds. A new copper-catalyzed intramolecular carboetherification of alkenes for the synthesis of bicyclic tetrahydrofurans is reported herein. The reaction involves Cu-catalyzed intramolecular addition of alcohols to unactivated alkenes and subsequent aryl C-H functionalization provides the C-C bond. Mechanistic studies indicate a primary carbon radical intermediate is involved and radical addition to the aryl ring is the likely C-C bond-forming mechanism. Preliminary catalytic enantioselective reactions are promising (up to 75% ee) and provide evidence that copper is involved in the alkene addition step, likely through a cis-oxycupration mechanism. Catalytic enantioselective alkene carboetherification reactions are rare and future development of this new method into a highly enantioselective process is promising. During the course of the mechanistic studies a protocol for alkene hydroetherification was also developed.  相似文献   

9.
Visible light driven nitrene transfer and insertion reactions of organic azides are an attractive strategy for the design of C–N bond formation reactions under mild reaction conditions, the challenge being lack of selectivity as a free nitrene reactive intermediate is usually involved. Herein is described an iron(iii) porphyrin catalysed sp3 C–H amination and alkene aziridination with selectivity by using organic azides as the nitrogen source under blue LED light (469 nm) irradiation. The photochemical reactions display chemo- and regio-selectivity and are effective for the late-stage functionalization of natural and bioactive compounds with complexity. Mechanistic studies revealed that iron porphyrin plays a dual role as a photosensitizer and as a catalyst giving rise to a reactive iron–nitrene intermediate for subsequent C–N bond formation.

An iron(iii) porphyrin catalysed sp3 C–H amination and alkene aziridination with broad substrate scope under mild conditions is conducted, with selectivity through the use of organic azides as the nitrogen source under blue LED light irradiation.  相似文献   

10.
Copper-catalyzed 1,2-hydroxysulfenylation of alkenes can be carried out by the use of disulfides and acetic acid in air. This reaction regio- and anti-selectively gave the corresponding 1,2-acetoxysulfides. Furthermore, the present method enables the use of both organosulfide groups of disulfide.  相似文献   

11.
B3LYP/6-31G* transition structures for aziridination of various alkenes by substituted oxaziridines and diaziridinum salts were located. Oxaziridines substituted with electron-withdrawing groups have activation energies for nitrogen transfer similar to those calculated for epoxidation by various known organic oxidants. These transition states are relatively insensitive to alkene substituents, but highly electron deficient alkenes were calculated to have low activation energies. N-Trimethylsilyl-derived oxaziridines are predicted to be good targets for alkene aziridination reagents. Activation energies calculated for aziridination by diaziridinium salts are generally lower in energy. Aziridinations of electron-rich and highly electron deficient alkenes by diaziridinium salts are predicted to be rapid. N-Methyl, N-trifluoroacetyl, and N-trimethylsilyl derivatives showed reasonable activation energies for nitrogen transfer.  相似文献   

12.
beta-Diketiminato Cu(I)-lutidine complexes [RMeNN]Cu(2,4-lutidine) (R = Me (4a), (i)Pr (4b)) were prepared in high yield from Tl[RMeNN] and [CuBr(2,4-lutidine)(2)](2). Both 4a and 4b reversibly dissociate lutidine base in toluene to give [RMeNN]Cu(toluene) solvento complexes. A related base-free dicopper species [[Me(2)NN]Cu](2) (6) bridged via eta(2)-binding of opposing N-aryl rings could be isolated by the addition of Tl[Me(2)NN] to CuBr. The lutidine precursors serve as precatalysts for the aziridination of alkenes with PhI=NTs. Styrene, beta-methylstyrene, and cyclooctene gave the highest yields (59-96%) with a low olefin to PhI=NTs ratio (3:1) and 5 mol % catalyst loading.  相似文献   

13.
Lebel H  Huard K 《Organic letters》2007,9(4):639-642
The rhodium-catalyzed intermolecular C-H insertion of the nitrene derived from 2,2,2-trichloroethyl-N-tosyloxycarbamate proceeded in good to excellent yields to produce a variety of Troc-protected amines. With cyclic aliphatic alkanes, it is possible to use only 2 equiv of substrate, whereas the reaction with aromatic alkanes is run neat. Not only does the nitrene insertion proceed in benzylic, secondary, and tertiary C-H bonds but also primary C-H insertion products were obtained in good yields. Finally, the use of chiral rhodium catalysts to provide an enantioselective version of this process is discussed. [reaction: see text].  相似文献   

14.
Catalytic intramolecular alkene aziridination of sulfamate is an emerging methodology for the asymmetric synthesis of chiral functionalized amines involving the formation of bicyclic aziridines. This study demonstrates the ability of the latter to undergo ring-opening with various carbon nucleophiles: Grignard reagents, lithium salts of terminal alkynes, dithiane, malonate. These S(N)2-type reactions occur with high levels of regio- and chemoselectivity to generally afford seven-membered cyclic sulfamidates in good yields. Carbon nucleophiles have also been found to react with these sulfamidates provided that the sulfamate ester has been previously activated by introduction of a tosyl substituent on the NH group. The versatility of this strategy has been illustrated with the syntheses of spisulosine and its fluoro analogue.  相似文献   

15.
The cobalt(II) complexes of D2-symmetric chiral porphyrins, such as 3,5-Di(t)Bu-ChenPhyrin P5, can catalyze asymmetric olefin aziridination with diphenylphosphoryl azide (DPPA) as a nitrene source. Acceptable asymmetric inductions were observed for the [Co(P5)]-based catalytic system, forming the desired N-phosphorus-substituted aziridines in moderate to high yields and good enantioselectivities.  相似文献   

16.
Metal nitrenes for use in C-H insertion reactions were obtained from N-tosyloxycarbamates in the presence of an inorganic base and a rhodium(II) dimer complex catalyst. The C-H amination reaction proceeds smoothly, and the potassium tosylate that forms as a byproduct is easily removed by filtration or an aqueous workup. This new methodology allows the amination of ethereal, benzylic, tertiary, secondary, and even primary C-H bonds. The intramolecular reaction provides an interesting route to various substituted oxazolidinones, whereas the intermolecular reaction gives trichloroethoxycarbonyl-protected amines that can be isolated with moderate to excellent yields and that cleave easily to produce the corresponding free amine. The development, scope, and limitations of the reactions are discussed herein. Isotopic effects and the electronic nature of the transition state are used to discuss the mechanism of the reaction.  相似文献   

17.
A facile one-pot procedure for copper-catalyzed PhI(OAc)2-mediated asymmetric alkene aziridination had been developed. Commercially available PhI(OAc)2 and sulfonamides were used to generate the nitrene precursors (PhINR) in situ for olefin aziridination. This one-pot procedure had been optimized using 4-nitrobenzenesulfonamide as the nitrene source. With 5 mol % of the chiral copper catalyst, these conditions afforded 94% yield of the isolated product with 75% ee. We had also developed a simple and rapid method to monitor the rate of this one-pot aziridination.  相似文献   

18.
The present study illustrates the possibility of a rational approach that bypasses the requirement for stoichiometric amounts of toxic oxidants and metal additives (including reagents and catalysts) in organic redox reactions. We describe an aziridination process that delivers a nitrene functionality to olefins from a readily available N-aminophthalimide. Remarkably, both electron-rich and electron-poor olefins are converted to aziridines with high efficiency. The continuum of applied potentials and the heterogeneous nature of reactions at electrode surfaces allow for the electrochemical discrimination of substrates which have similar redox potentials and therefore cannot be selectively reduced or oxidized using soluble reagents. This selectivity is due to the phenomenon of overpotential, the kinetic inhibition of electron transfer on a particular electrode surface.  相似文献   

19.
Gao GY  Harden JD  Zhang XP 《Organic letters》2005,7(15):3191-3193
[reaction: see text]. Cobalt porphyrins are capable of catalyzing the aziridination of alkenes with bromamine-T as the nitrene source. Among cobalt complexes of different porphyrins, Co(TDClPP) is an effective catalyst that can aziridinate a wide variety of alkenes. The catalytic system can operate at room temperature in a one-pot fashion with alkenes as limiting reagents, forming the desired N-sulfonylated aziridine derivatives in high to excellent yields with NaBr as the byproduct.  相似文献   

20.
Recent developments in asymmetric aziridination   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号