首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays.  相似文献   

2.
Coupling of nonnatural nucleobases to the orthogonally protected backbone 1 on the solid phase provided access to novel peptide nucleic acid (PNA) conjugates 2 , which are difficult to synthesize by standard routes. Hybridization probes containing the thiazolorange dye might allow DNA sequence analysis in real time. B−CH2CO=modified nucleobase, fluorescent dye, etc; Boc, Fmoc=protecting groups.  相似文献   

3.
Molecular beacons are sensitive fluorescent probes hybridizing selectively to designated DNA and RNA targets. They have recently become practical tools for quantitative real-time monitoring of single-stranded nucleic acids. Here, we comparatively study the performance of a variety of such probes, stemless and stem-containing DNA and PNA (peptide nucleic acid) beacons, in Tris-buffer solutions containing various concentrations of NaCl and MgCl(2). We demonstrate that different molecular beacons respond differently to the change of salt concentration, which could be attributed to the differences in their backbones and constructions. We have found that the stemless PNA beacon hybridizes rapidly to the complementary oligodeoxynucleotide and is less sensitive than the DNA beacons to the change of salt thus allowing effective detection of nucleic acid targets under various conditions. Though we found stemless DNA beacons improper for diagnostic purposes due to high background fluorescence, we believe that use of these DNA and similar RNA constructs in molecular-biophysical studies may be helpful for analysis of conformational flexibility of single-stranded nucleic acids. With the aid of PNA "openers", molecular beacons were employed for the detection of a chosen target sequence directly in double-stranded DNA (dsDNA). Conditions are found where the stemless PNA beacon strongly discriminates the complementary versus mismatched dsDNA targets. Together with the insensitivity of PNA beacons to the presence of salt and DNA-binding/processing proteins, the latter results demonstrate the potential of these probes as robust tools for recognition of specific sequences within dsDNA without denaturation and deproteinization of duplex DNA.  相似文献   

4.
Peptide nucleic acids (PNA) oligomers were synthesized in most cases by peptide a peptide synthesis from N-protected monomers. In this work a new method of obtaining PNA monomer by Ugi four-component condensation reaction was tested by solid-phase synthesis. The Fmoc protected PNA monomer was build up with thymin-l-yl acetic acid, 3-methylbutyl aldehyde, Fmoc protected aminoethyl isocyanide and Gly-Wang resin.  相似文献   

5.
Attachment of a vinyl group at guanine position 8 provides fluorescent properties of the nucleobase. Therefore, 8-vinylguanine was introduced as a 2-aminoethylglycine peptide nucleic acid (PNA) building block. Incorporation of the guanine analog in short PNA sequences by Fmoc solid phase peptide synthesis allowed the differentiation between hybridization states of specific double strands with DNA, RNA, and PNA as well as quadruplex forming RNA/PNA oligomers based on fluorescence intensity.  相似文献   

6.
Sensitive, safe and easy-to-use probes for the detection of nucleic acids are urgently called for. To this end we are in the process of developing a fluorescence-based technique to work in homogeneous assay media. We have examined pyrene and fluorescein as fluorescent labels for natural DNA probes. A fraction of the cytosine residues of a single-stranded cDNA was randomly labelled with either pyrene or fluorescein using the bisulfite-catalyzed diamine reaction. Both fluorophores showed fluorescence quenching when the labelled probe was hybridized with its complementary strand and we describe the changes in steady-state fluorescence intensity that occurred upon hybridization. Our results demonstrate that pyrene quenching is more efficient than fluorescein quenching and thus pyrene-labelled probes are more sensitive for detecting and quantifying DNA from natural sources.  相似文献   

7.
The exceptional hybridization properties of peptide nucleic acids (PNAs) coupled with the ease of their synthesis has made this artificial nucleic acid mimetic a desirable platform for diagnostics, therapeutics and supramolecular engineering. PNA backbone modifications have been extensively explored to finetune physicochemical properties and for conjugation of functional molecules. Here, we detail the synthesis of a universal γ-propargyl-PNA backbone from serine, and its acylation with the four DNA canonical nucleobases. The availability of serine as d or l enantiomer provide simple accesses to PNA oligomers for hybridization with natural oligonucleotides or for orthogonal hybridization circuitry. We show that late-stage conjugation enables optimization of the physicochemical properties. This approach is appealing due to its orthogonality to Fmoc-SPPS, its flexibility and ease for introducing diversity by on-resin copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). We exemplified the utility of these novel monomers with PNA based hybridization chain reactions (HCRs).  相似文献   

8.
[structure: see text] Peptide nucleic acid (PNA) monomers containing the tricyclic cytosine analogues phenoxazine, 9-(2-aminoethoxy)phenoxazine (G-clamp), and 9-(3-aminopropoxy)phenoxazine (propyl-G-clamp) have been synthesized. The modified nucleobases were incorporated into PNA oligomers using Boc-chemistry for solid-phase synthesis. PNAs containing single G-clamp modifications exhibit significantly enhanced affinity toward RNA and DNA targets relative to unmodified PNA while maintaining mismatch discrimination. These PNA G-clamp modifications exhibit the highest increase in affinity toward nucleic acid targets reported so far for PNA modifications.  相似文献   

9.
Selective discrimination of a single‐nucleotide difference in single‐stranded DNA or RNA remains a challenge with conventional DNA or RNA probes. A peptide nucleic acid (PNA)‐derived probe, in which PNA forms a pseudocomplementary heteroduplex with inosine‐containing DNA or RNA, effectively discriminates a single‐nucleotide difference in a closely related group of sequences of single‐stranded DNA and/or RNA. The pseudocomplementary PNA heteroduplex is easily converted to a fluorescent probe that distinctively detects a member of highly homologous let‐7 microRNAs.  相似文献   

10.
A lys-GTAGATCACT-lys peptide nucleic acid (PNA) decamer labelled with the luminescent 2,3-diphenyl maleimido (DPM) group on the ε-position of the terminal lysine residue was prepared through an automated solid phase synthesis. Fluorescence emission of the DPM-labelled PNA thus obtained was found to be significant and promising for the potential application in DNA recognition.  相似文献   

11.
Abstract

A simple method has been developed for synthesising oligonucleotides containing a thiol group at their 5′-termini. The sequence required is prepared using standard solid phase phosphoramidite methods and an extra round of synthesis is then performed with S-triphenylmethyl O-methoxymorpholino-phosphinyl 3-mercaptopropan (1) ol. After normal deblocking this gives an oligonucleotide containing a tritylthiol group attached to the 5′-phosphate of an oligonucleotide via a 3-carbon spacer arm. The trityl group can be removed with AgNO3 at pH 5 to give the free thiol. This compound is stable at pH 8 and reacts cleanly and rapidly with sulphydryl specific probes (eg fluorescent iodoacetates) at this pH value. This method can be used to prepare a wide variety of usefully labelled oligonucleotides and it is envisaged that fluorescent oligonucleotides will be useful in the study of protein nucleic acid interactions and to replace 32P labelled hybridisation probes.  相似文献   

12.
Phenylazonaphthalene peptide nucleic acid (PNA) monomers were successfully synthesized, and their photoisomerization was examined. The new PNA monomers showed reversible trans-cis isomerization with UVand visible light irradiation, which might be the foundation of photo-regulating the hybridization between PNA containing phenylazonaphthalene unit and DNA. Simultaneously, the fluorescence of the new PNA monomers might make them especially useful as structural probes.  相似文献   

13.
The effect of various charged or hydrophobic amino acids on the hybridisation of fully complementary and mismatch PNA-DNA duplexes was investigated via UV melting curve analysis. The results described here show that the thermal stability and binding specificity of PNA probes can be modified by conjugation to amino acids and these effects should be considered in experimental design when conjugating PNA sequences to solubility enhancing groups or cell transport peptides. Where stabilisation of a duplex is important, without there being a corresponding need for specific binding to fully complementary targets, the conjugation of multiple lysine residues to the C-terminus of PNA may be the best probe design. If, however, the key is to obtain maximum discrimination between fully complementary and mismatch targets, a replacement of glutamic acid for lysine as the routine solubility enhancing group is recommended.  相似文献   

14.
Controlled synthesis of cobalt ferrite superparamagnetic nanoparticles covered with a gold shell has been achieved by an affinity and trap strategy. Magnetic nanoparticles are functionalized with a mixture of amino and thiol groups that facilitate the electrostatic attraction and further chemisorption of gold nanoparticles, respectively. Using these nanoparticles as seeds, a complete coating shell is achieved by gold salt-iterative reduction leading to monodisperse water-soluble gold-covered magnetic nanoparticles, with an average diameter ranging from 21 to 29 nm. These constitute a versatile platform for immobilization of biomolecules via thiol chemistry, which is exemplified by the immobilization of peptide nucleic acid (PNA) oligomers that specifically hybridize with complementary DNA molecules in solution. Hybridation with DNA probes has been measured using Rhodamine 6G fluorescence marker and the detection of a single nucleotide mutation has been achieved. These results suggest the PNA-nanoparticles application as a biosensor for DNA genotyping avoiding commonly time-consuming procedures employed.  相似文献   

15.
A new combined solid-liquid phase synthesis method for a spin labeled peptide nucleic acid (PNA) is developed. The methodology involved initial preparation of a protected PNA on solid phase, followed by efficient solution phase coupling to a spin label containing a reactive carboxylic group. This strategy allows to maintain the integrity of the nitroxide moiety during the various steps of chemical synthesis assuring in the same time the fidelity of the hybridization assay. This compound can be used as a reporter molecule to investigate the binding of peptide nucleic acids to oligonucleotide sequences (DNA or RNA) by EPR spectroscopy.  相似文献   

16.
A Boc-protecting group strategy for Fmoc-based PNA (peptide nucleic acid) oligomerization has been developed for thymine, 2,6-diaminopurine (DAP) and 2-aminopurine (2AP). The monomers may be used interchangeably with standard Fmoc PNA monomers. The DAP monomer was incorporated into a PNA and was found to selectively bind to T (ΔT(m)≥ +6 °C) in a complementary DNA strand. The 2AP monomer showed excellent discrimination of T (ΔT(m)≥ +12 °C) over the other nucleobases. 2AP also acted as a fluorescent probe of the PNA:DNA duplexes and displayed fluorescence quenching dependent on the opposite base.  相似文献   

17.
Peptide nucleic acid (PNA) oligomers can be used as probes in pre-gel hybridization experiments, as an alternative to Southern hybridization. In this technique, the PNA probe is hybridized to a cyanine-5 labeled DNA sample denatured at low ionic strength, and the mixture is directly injected for size separation into a capillary electrophoresis (CE) system equipped with laser-induced fluorescence (LIF) detector. The neutral backbone of PNA allows hybridization to occur at low ionic strength and assures an efficient CE separation of the PNA/DNA hybrids from both double-stranded and single-stranded DNA. We have used as a model system the cystic fibrosis R553X and R1162X single-base mutations and we have assessed the influence of various factors, such as temperature and denaturants concentration on DNA/PNA hybrid stability in order to achieve the high specificity required for a single base pair discrimination.  相似文献   

18.
Previously we introduced the positively charged pyrrolidine-amide oligonucleotide mimics (POM), which possess a pyrrolidine ring and amide linkage in place of the sugar-phosphodiester backbone of natural nucleic acids. Short POM homo-oligomers have shown promising DNA and RNA recognition properties. However, to better understand the properties of POM and to assess their potential for use as modulators of gene expression and bioanalytical or diagnostic tools, more biologically relevant, longer, mixed-sequence oligomers need to be studied. In light of this, several mixed-sequence POM oligomers were synthesised, along with fluorescently labelled POM oligomers and a POM-peptide conjugate. UV thermal denaturation showed that mixed-sequence POMs hybridise to DNA and RNA with high affinity but slow rates of association and dissociation. The sequence specificity, influence of terminal amino acids, and the effect of pH and ionic strength on the DNA and RNA hybridisation properties of POM were extensively investigated. In addition, isothermal titration calorimetry (ITC) was used to investigate the thermodynamic parameters of the binding of a POM-peptide conjugate to DNA. Cellular uptake experiments have also shown that a fluorescently labelled POM oligomer is taken up into HeLa cells. These findings demonstrate that POM has the potential for use in a variety of applications, alongside other modified nucleic acids developed to date, such as peptide nucleic acids (PNA) and phosphoramidate morpholino oligomers (PMO).  相似文献   

19.
Thomson DA  Dimitrov K  Cooper MA 《The Analyst》2011,136(8):1599-1607
Amplification-free detection of nucleic acids in complex biological samples is an important technology for clinical diagnostics, especially in the case where the detection is quantitative and highly sensitive. Here we present the detection of a synthetic DNA sequence from Herpes Simplex Virus-1 within swine cerebrospinal fluid (CSF), using a sandwich-like, magnetic nanoparticle pull-down assay. Magnetic nanoparticles and fluorescent polystyrene nanoparticles were both modified with DNA probes, able to hybridise either end of the target DNA, forming the sandwich-like complex which can be captured magnetically and detected by fluorescence. The concentration of the target DNA was determined by counting individual and aggregated fluorescent nanoparticles on a planar glass surface within a fluidic chamber. DNA probe coupling for both nanoparticles was optimized. Polystyrene reporter nanoparticles that had been modified with amine terminated DNA probes were also treated with amine terminated polyethylene glycol, in order to reduce non-specific aggregation and target independent adhesion to the magnetic particles. This way, a limit of detection for the target DNA of 0.8 pM and 1 pM could be achieved for hybridisation buffer and CSF respectively, corresponding to 0.072 and 0.090 femtomoles of target DNA, in a volume of 0.090 mL.  相似文献   

20.
Fluorescent-base analogues (FBAs) comprise a group of increasingly important molecules for the investigation of nucleic acid structure and dynamics as well as of interactions between nucleic acids and other molecules. Here, we report on the synthesis, detailed spectroscopic characterisation and base-pairing properties of a new environment-sensitive fluorescent adenine analogue, quadracyclic adenine (qA). After developing an efficient route of synthesis for the phosphoramidite of qA it was incorporated into DNA in high yield by using standard solid-phase synthesis procedures. In DNA qA serves as an adenine analogue that preserves the B-form and, in contrast to most currently available FBAs, maintains or even increases the stability of the duplex. We demonstrate that, unlike fluorescent adenine analogues, such as the most commonly used one, 2-aminopurine, and the recently developed triazole adenine, qA shows highly specific base-pairing with thymine. Moreover, qA has an absorption band outside the absorption of the natural nucleobases (>300?nm) and can thus be selectively excited. Upon excitation the qA monomer displays a fluorescence quantum yield of 6.8?% with an emission maximum at 456?nm. More importantly, upon incorporation into DNA the fluorescence of qA is significantly less quenched than most FBAs. This results in quantum yields that in some sequences reach values that are up to fourfold higher than maximum values reported for 2-aminopurine. To facilitate future utilisation of qA in biochemical and biophysical studies we investigated its fluorescence properties in greater detail and resolved its absorption band outside the DNA absorption region into distinct transition dipole moments. In conclusion, the unique combination of properties of qA make it a promising alternative to current fluorescent adenine analogues for future detailed studies of nucleic acid-containing systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号