首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A highly enantioselective catalytic hydrogenation of cyclic enones was achieved by using the combination of a cationic Rh(I) complex, (S)-5,5'-bis{di(3,5-di-tert-butyl-4-methoxyphenylphosphino)}-4,4'-bi-1,3-benzodioxole (DTBM-SEGPHOS), and (CH2CH2PPh3Br)2. The presence of an s-cis C=C bond isopropylidene moiety on the cyclic enone influenced the enantioselectivity of the hydrogenation. Thus, the hydrogenation of 3-alkyl-6-isopropylidene-2-cyclohexen-1-one, which contains both s-cis and s-trans enones, proceeded in excellent enantioselectivity (up to 98 % ee). To obtain high enantio- and s-trans selectivities, the addition of a halogen source to the cationic Rh complex was the essential step. With the key step of the s-trans selective asymmetric hydrogenation of piperitenone, we demonstrated a new synthetic method for optically pure (-)-menthol via three atom-economical hydrogenations. Moreover, we found that the complete s-trans and s-cis C=C bond selective reactions were also realized by the proper choice of both the chiral ligands and halides.  相似文献   

2.
A B3LYP/6-31G* study has been carried out for the reactions of methacrolein with cyclopentadiene, parent nitrone, 1-pyrroline-1-oxide, and (Z)-C,N-diphenylnitrone, in which the coordination of a Lewis acid (borane) and the solvent polarity (dichloromethane) have been taken into account. Calculated activation parameters, regioselectivities (for 1,3-dipolar cycloaddition reactions), and endo/exo stereoselectivities show good agreement with available experimental data. Gas-phase calculations show a varied behavior of the s-cis/s-trans TS stability for noncatalyzed reactions (from the systematic s-cis preference for the cyclopentadiene reaction to the systematic s-trans predilection encountered in the diphenylnitrone cycloaddition). BH3 coordination leads to a preferential stabilization of s-trans TSs in the reactions of cyclopentadiene (exo approach) and diphenylnitrone but a larger stabilization of s-cis structures in the processes involving the parent nitrone or 1-pyrroline-1-oxide. Additionally, a rather systematic preferential stabilization of s-trans structures is induced by solvent polarity in most reactions. As a consequence, an s-trans preference is predicted in solution for both thermal and catalyzed types of reactions in most approaches. Such a conclusion is consistent with some experimental results suggesting a preference for a particular conformation of the methacrolein-Lewis acid complexes.  相似文献   

3.
Thermal and microwave assisted [4+2] cycloadditions of 1,4-diaryl-1-aza-1,3-butadienes with allenic esters lead to cycloadducts, which after a 1,3-H shift afford variedly substituted unsymmetrical 2-alkyl-1,4-diaryl-3-ethoxycarbonyl-1,4-dihydropyridines in high yields. Reactions carried out under microwave irradiation are cleaner and give higher yields with much shortened reaction times. Density functional theory (DFT) at the B3LYP/6-31G* level has been used to calculate geometric features of the reactants, barrier for s-trans to s-cis and reverse isomerization of azadienes (5a-d, 10a-e), dihedral angles between N(1), C(2), C(3), and C(4) atoms of azadienes along with various indices such as chemical hardness (eta), chemical potential (micro), global electrophilicity (omega), and the difference in global electrophilicity (Deltaomega) between the reacting pairs and Fukui functions (f (+) and f(-)). The results revealed that s-trans is the predominant conformation of azadienes at ambient temperature and the barrier for conversion of the s-trans rotamer of 1-azadienes to s-cis may be the major factor influencing the chemoselectivity, i.e., [4+2] verses [2+2] cycloaddition. The regiochemistry of the observed cycloadditions is collated with the obtained local electrophilicity indices (Fukui functions). Transition states for the formation of both [4+2] and [2+2] cycloadducts as located at the PM3 level indicate that the transition state for the formation of [4+2] cycloadducts has lower energy, again supporting the earlier conclusion that preferred formation of [4+2] cycloaaducts at higher temperature may be a consequence of barrier for s-trans to s-cis transformation of 1-azadienes.  相似文献   

4.
The four stereoisomers of chalcogran 1 ((2RS,SRS)-2-ethyl-1,6-di-oxaspiro[4.4]nonane), the principal component of the aggregation pheromone of the bark beetle pityogenes chalcographus, are prone to interconversion at the spiro center (C5). During diastereo- and enantioselective dynamic gas chromatography (DGC), epimerization of 1 gives rise to two independent interconversion peak profiles, each featuring a plateau between the peaks of the interconverting epimers. To determine the rate constants of epimerization by dynamic gas chromatography (DGC), equations to simulate the complex elution profiles were derived, using the theoretical plate model and the stochastic model of the chromatographic process. The Eyring activation parameters of the experimental interconversion profiles, between 70 and 120 C in the presence of the chiral stationary phase (CSP) Chirasil-beta-Dex, were then determined by computer-aided simulation with the aid of the new program Chrom-Win: (2R,5R)-1: deltaG(++) (298.15 K) = 108.0 +/-0.5 kJ mol(-1), deltaH(++) = 47.1+/-0.2 kJ mol(-1), deltaS(++) = -204+/-6 JK(-1) mol(-1): (2R,5S)-1: deltaG(++) (298.15 K) = 108.5+/-0.5 kJ mol(-1), deltaH(++) = 45.8+/-0.2 kJ mol(-1), deltaS(++) = -210 +/-6 J K mol(-1); (2S,5S)-1: deltaG(++) (298.15 K)= 108.1+/-0.5 kJ mol(-1), deltaH(++) = 49.3+/-0.3 kJ mol(-1), deltaS(++) = -197+/-8 J K(-1) mol(-1); (2S,5R)-1: deltaG(++) (298.15 K)=108.6+/-0.5 kJ mol(-1), deltaH(++) = 48.0+/-0.3 kJ mol(-1), deltaS(++) = -203+/-8 J K(-1) mol(-1). The thermodynamic Gibbs free energy of the E/Z equilibrium of the epimers was determined by the stopped-flow multidimensional gas chromatographic technique: deltaG(E/Z) (298.15 K)= -0.5 kJ mol(-1), deltaH(E/Z) = 1.4 kJ mol(-1) and deltaS(E/Z) = 6.3 J K(-1) mol(-1). An interconversion pathway proceeding through ring-opening and formation of a zwitterion and an enol ether/alcohol intermediate of 1 is proposed.  相似文献   

5.
The isomerization dynamics of tris-catecholate complexes have been investigated by variable-temperature NMR methods, demonstrating that the intramolecular racemization of Delta and Lambda enantiomers of d0 Ti(IV) is facile and faster than that of d10 Ga(III) and Ge(IV) analogues. Activation parameters for the racemization of K2[Ti2(3)] (H(2)2 = 2,3-dihydroxy-N,N'-diisopropylterephthalamide) were determined from line shape analysis of 1H NMR spectra [methanol-d4: deltaH++ = 47(1) kJ/mol; deltaS++ = -34(4) J/mol K; deltaG++(298) = 57(3) kJ/mol; DMF-d7: deltaH++ = 55(1) kJ/mol; deltaS++ = -16(4) J/mol K; deltaG++(298) = 59(3) kJ/mol; D2O (pD* = 8.6, 20% MeOD): deltaH++ = 48(3) kJ/mol; deltaS++ = -28(10) J/mol K; deltaG++(298) = 56(3) kJ/mol]. The study of K2[Ti4(3)] (H(2)4 = 2,3-dihydroxy-N-tert-butyl-N'-benzylterephthalamide) reveals two distinct isomerization processes: faster racemization of mer-[Ti4(3)]2- by way of a Bailar twist mechanism (D3h transition state) [T(c) approximately 242 K, methanol-d4], and a slower merright harpoon over left harpoonfac [Ti4(3)]2- isomerization by way of a Ray-Dutt mechanism (C2v transition state) [T(c) approximately 281 K, methanol-d4]. The solution behavior of the Ti(IV) complexes mirrors that reported previously for analogous Ga(III) complexes, while that of analogous Ge(IV) complexes was too inert to be detected by 1H NMR up to 400 K. These experimental findings are augmented by DFT calculations of the ML3 ground states and Bailar and Ray-Dutt transition states, which correctly predict the relative kinetic barriers of complexes of the three metal ions, in addition to faithfully reproducing the ground-state structures. Orbital calculations support the conclusion that participation of the Ti(IV) d orbitals in ligand bonding contributes to the greater stabilization of the prismatic Ti(IV) transition states.  相似文献   

6.
The photoinduced hydrogen (or deuterium) detachment reaction of thiophenol (C(6)H(5)SH) or thiophenol-d(1) (C(6)H(5)SD) pumped at 243 nm has been investigated using the H (D) ion velocity map imaging technique. Photodissociation products, corresponding to the two distinct and anisotropic rings observed in the H (or D) ion images, are identified as the two lowest electronic states of phenylthiyl radical (C(6)H(5)S). Ab initio calculations show that the singly occupied molecular orbital of the phenylthiyl radical is localized on the sulfur atom and it is oriented either perpendicular or parallel to the molecular plane for the ground (B(1)) and the first excited state (B(2)) species, respectively. The experimental energy separation between these two states is 2600+/-200 cm(-1) in excellent agreement with the authors' theoretical prediction of 2674 cm(-1) at the CASPT2 level. The experimental anisotropy parameter (beta) of -1.0+/-0.05 at the large translational energy of D from the C(6)H(5)SD dissociation indicates that the transition dipole moment associated with this optical transition at 243 nm is perpendicular to the dissociating S-D bond, which in turn suggests an ultrafast D+C(6)H(5)S(B(1)) dissociation channel on a repulsive potential energy surface. The reduced anisotropy parameter of -0.76+/-0.04 observed at the smaller translational energy of D suggests that the D+C(6)H(5)S(B(2)) channel may proceed on adiabatic reaction paths resulting from the coupling of the initially excited state to other low-lying electronic states encountered along the reaction coordinate. Detailed high level ab initio calculations adopting multireference wave functions reveal that the C(6)H(5)S(B(1)) channel may be directly accessed via a (1)(n(pi),sigma(*)) photoexcitation at 243 nm while the key feature of the photodissociation dynamics of the C(6)H(5)S(B(2)) channel is the involvement of the (3)(n(pi),pi(*))-->(3)(n(sigma),sigma(*)) profile as well as the spin-orbit induced avoided crossing between the ground and the (3)(n(pi),sigma(*)) state. The S-D bond dissociation energy of thiophenol-d(1) is accurately estimated to be D(0)=79.6+/-0.3 kcalmol. The S-H bond dissociation energy is also estimated to give D(0)=76.8+/-0.3 kcalmol, which is smaller than previously reported ones by at least 2 kcalmol. The C-H bond of the benzene moiety is found to give rise to the H fragment. Ring opening reactions induced by the pi-pi(*)n(pi)-pi(*) transitions followed by internal conversion may be responsible for the isotropic broad translational energy distribution of fragments.  相似文献   

7.
Detailed studies on the kinetics and the thermodynamics of the excited-state torsional isomerization of the title molecule (1) relative to exocyclic C2-O bond, when dissolved in 3-methylpentane, are reported by means of nontime- and time-resolved fluorescence spectroscopy. Over the broad temperature range studied, 1 exists in spectrally distinct, thermally equilibrated s-cis and s-trans conformations in the ground state (S(0)). In the lowest excited singlet state (S(1)) and above 260 K a pure adiabatic interconversion channel is activated that interconverts s-cis* and s-trans* conformers through a nearly fully reversible isomerization pathway with an activation energy of about 29 kJ/mol. The excited-state equilibrium constant is found to be remarkably temperature-independent just barely exceeding 1 above 260 K. Contrary to the predominantly irreversible photoisomerization mechanism generally observed in related compounds, this work provides insights into the high reversibility of an excited-state rotameric equilibration in solution.  相似文献   

8.
The s-trans/s-cis conformational equilibria of 10 methyl-substituted 1,3-butadienes [(E)- and (Z)-1,3-pentadiene; 2-methyl-1,3-butadiene; (E)-2-methyl-1,3-pentadiene; 2,3-dimethyl-1,3-butadiene; (E,E)-, (E,Z)-, and (Z,Z)-2,4-hexadiene; 2,5-dimethyl-2,4-hexadiene; and (E,E)-2,4-dimethyl-2,4-hexadiene] were explored by trapping high-temperature conformational equilibria by cryogenic deposition. The vapor state enthalpy differences of these s-trans/s-cis conformers, DeltaH(t equilibrium c), were determined by varying the equilibrating temperature and integrating the resulting matrix isolated IR spectra. The results obtained are in good agreement with ab initio calculations at the G3 level. From these thermodynamic parameters, methyl group nonbonded interactions in conjugated 1,3-butadienes were delineated. Rates of decay of s-cis conformers to their s-trans rotamers were obtained in the solid-state by warming up trapped high-temperature equilibrated samples formed from neat depositions. These data were analyzed in terms of dispersive kinetics with matrix site effects in the solid-state modeled by a Gaussian distribution of activation energies. The activation barriers thus obtained were compared with G3 calculations of the enthalpies of activation.  相似文献   

9.
[Reaction: see text]. RB3LYP calculations, reported here, indicate that peroxy acid s-cis conformer is more stable than its s-trans counterpart, in agreement with experimental data. Difference in stability is the highest in the gas phase, but it falls considerably on going from the gas phase to moderately polar solvent. In the case of peroxy formic acid, the enthalpy (free energy) difference is about 3.4 (2.5) kcal/mol, respectively, in the gas phase but decreases to 1.2 (0.6) kcal/mol in dichloromethane solution. Introduction of an alkyl or aryl substituent on the peroxy acid, that is, on passing to peroxy acetic, peroxy benzoic (PBA), and m-chloroperoxy benzoic acid (MCPBA), adds a further significant (1.0-1.5 kcal/mol) favor to the s-cis isomer. RB3LYP/6-31+G(2d,p) calculations on the epoxidation of 2-propenol with peroxy formic and peroxy benzoic acids, respectively, suggest that the less stable peroxy acid s-trans conformer can compete with the more stable s-cis form in epoxidation reaction of these substrates. Transition structures arising from s-trans peroxy acids ("trans" TSs) retain both the well-established, for "cis" TS, perpendicular orientation of the O-H peroxy acid bond relative to the C=C bond and the one-step oxirane ring formation. These TSs collapse to the final epoxide via a 1,2-H shift at variance with the 1,4-H transfer of the classical Bartlett's "cis" mechanism. The "trans" reaction pathways have a higher barrier in the gas phase than the "cis" reaction channels, but in moderately polar solvents they become competitive. In fact, the "trans" TSs are always significantly more stabilized than their "cis" counterparts by solvation effects. Calculations also suggest that going from peroxy formic to peroxy benzoic acid should slightly disfavor the "trans" route relative to the "cis" one, reflecting, in an attenuated way, the decrease in the peroxy acid s-trans/s-cis conformer ratio. The predicted behavior for MCPBA parallels that of PBA acid.  相似文献   

10.
The potential energy surface for the reaction of HOCO radicals with hydrogen atoms has been explored using the CCSD(T)/aug-cc-pVQZ ab initio method. Results show that the reaction occurs via a formic acid (HOC(O)H) intermediate, and produces two types of products: H(2)O+CO and H(2)+CO(2). Reaction enthalpies (0 K) are obtained as -102.0 kcalmol for the H(2)+CO(2) products, and -92.7 kcalmol for H(2)O+CO. Along the reaction pathways, there exists a nearly late transition state for each product channel. However, the transition states locate noticeably below the reactant asymptote. Direct ab initio dynamics calculations are also carried out for studying the kinetics of the H+HOCO reaction. At room temperature, the rate coefficient is predicted to be 1.07x10(-10)cm(3) molec(-1) s(-1) with a negligible activation energy E(a)=0.06 kcalmol, and the branching ratios are estimated to be 0.87 for H(2)+CO(2), and 0.13 for H(2)O+CO. In contrast, the product branching ratios have a strong T dependence. The branching ratio for H(2)O+CO could increase to 0.72 at T=1000 K.  相似文献   

11.
This study aims to determine whether a balance between concerted and non-concerted pathways exists, and in particular to ascertain the possible role of diradical/zwitterion or peroxirane intermediates. Three non-concerted pathways, via 1) diradical or 2) peroxirane intermediates, and 3) by means of hydrogen-abstraction/radical recoupling, plus one concerted pathway (4), are explored. The intermediates and transition structures (TS) are optimized at the DFT(MPW1K), DFT(B3LYP) and CASSCF levels of theory. The latter optimizations are followed by multireference perturbative CASPT2 energy calculations. (1) The polar diradical forms from the separate reactants by surmounting a barrier (deltaE(++)(MPW1K)=12, deltaE++(B3LYP)=14, and deltaE(++)(CASPT2)=16 kcal mol(-1) and can back-dissociate through the same TS, with barriers of 11 (MPW1K) and 8 kcal mol(-1) (B3LYP and CASPT2). The diradical to hydroperoxide transformation is easy at all levels (deltaE(++)(MPW1K)<4, deltaE(++)(B3LYP)=1 and deltaE(++)(CASPT2)=1 kcal mol(-1)). (2) Peroxirane is attainable only by passing through the diradical intermediate, and not directly, due to the nature of the critical points involved. It is located higher in energy than the diradical by 12 kcal mol(-1), at all theory levels. The energy barrier for the diradical to cis-peroxirane transformation (deltaE(++)=14-16 kcal mol(-1)) is much higher than that for the diradical transformation to the hydroperoxide. In addition, peroxirane can very easily back-transform to the diradical (deltaE(++)<3 kcal mol(-1)). Not only the energetics, but also the qualitative features of the energy hypersurface, prevent a pathway connecting the peroxirane to the hydroperoxide at all levels of theory. (3) The last two-step pathway (hydrogen-abstraction by (1)O(2), followed by HOO-allyl radical coupling) is not competitive with the diradical mechanism. (4) A concerted pathway is carefully investigated, and deemed an artifact of restricted DFT calculations. Finally, the possible ene/[pi2+pi2] competition is discussed.  相似文献   

12.
In this article we have examined the very low-temperature photochemistry of three acyclic 1,3-dienes. We have used high-temperature deposition techniques combined with matrix isolation to create samples enriched with the thermally meta-stable s-cis form. This technique has allowed us to examine the separate photochemistry of the s-cis and s-trans conformers. Our results suggest the presence and the absence of barriers on the excited-state surface. In particular, we have found that the electrocyclic closure and s-cis-s-trans photochemical isomerization stops at 15 K for 2,3-dimethyl-1,3-butadiene-d10. The closure occurs at higher temperatures in solution but is slowed by a deuterium isotope effect. The s-trans conformer of EE-2,4-hexadiene shows almost no photoreactivity in a matrix under 254 nm irradiation, but the s-cis conformer is rapidly converted to ZE-2,4-hexadiene (ZE-HXD). The photoreactivity of ZE-HXD is similar in that there is a relatively quick conversion of the s-cis conformer under these conditions, with only a very slow conversion of the s-trans to photoproducts.  相似文献   

13.
A direct conformational analysis using scanning tunneling microscopy (STM) has been performed for individual adsorbed alpha-octithiophene molecules on Cu(100). s-cis and s-trans conformational isomers are induced by the rotational flexibility of individual thiophene rings. By adding bulky N-silyl substituents to octithiophene, we successfully identify the s-cis and s-trans conformational isomers using STM. The obtained relative abundances of the s-cis and s-trans conformations are analyzed using ab initio molecular orbital calculations.  相似文献   

14.
The "azido gauche effect" was examined both experimentally and theoretically and was found to determine the conformation of, for example, (4R)- and (4S)-azidoproline (Azp) derivatives. For (4R)Azp derivatives, the azido gauche effect induces a preferred C(4)-exo conformation of the pyrrolidine ring, which leads to stabilization of the s-trans amide conformer of, e.g., Ac-(4R)Azp-OCH(3) (5R) via an n-->pi interaction between the nonbonding electrons of the oxygen of the acetyl group and the carbonyl group of the ester. For (4S)Azp derivatives, the azido gauche effect results in a C(4)-endo conformation of the pyrrolidine ring that does not allow for this stabilizing n-->pi interaction of the s-trans conformer. Consequently, a significantly higher s-trans:s-cis amide conformer ratio is observed for (4R)Azp compared to (4S)Azp derivatives (e.g., 6.1:1 versus 2.6:1 in D(2)O for Ac-(4R)Azp-OCH(3) (5R) compared to Ac-(4S)Azp-OCH(3) (5S)). These conformational preferences are reflected in the higher tendency of (4S)Azp-containing peptides to form cyclic peptides with all-cis amide bonds compared to (4R)Azp derivatives. Ab initio calculations demonstrate that the strength of the azido gauche effect is comparable to that of the well-known "fluorine gauche effect". For azidoethane derivatives N(3)-CH(2)CH(2)-X (X = N(3), NHCOH, NHAc, or N(CH(3))Ac), the ab initio calculations revealed energy differences of 5-13 kJ mol(-)(1) between the anti and gauche conformations in favor of the gauche conformer. Calculations were also performed for the (4R)Azp and (4S)Azp derivatives 5R and 5S, supporting the experimentally observed data.  相似文献   

15.
Enoyl-CoA hydratase catalyzes the hydration of trans-2-crotonyl-CoA to 3(S)- and 3(R)-hydroxybutyryl-CoA with a stereoselectivity (3(S)/3(R)) of 400,000 to 1. Importantly, Raman spectroscopy reveals that both the s-cis and s-trans conformers of the substrate analog hexadienoyl-CoA are bound to the enzyme, but that only the s-cis conformer is polarized. This selective polarization is an example of ground state strain, indicating the existence of catalytically relevant ground state destabilization arising from the selective complementarity of the enzyme toward the transition state rather than the ground state. Consequently, the stereoselectivity of the enzyme-catalyzed reaction results from the selective activation of one of two bound substrate conformers rather than from selective binding of a single conformer. These findings have important implications for inhibitor design and the role of ground state interactions in enzyme catalysis.  相似文献   

16.
A cascade of cyclization/cycloaddition reactions was triggered by addition of protic oxygen nucleophiles ROH 2 (RO = CH3CO2, PhCO2, PhO) to [2-(1-cyclohexenyl)ethynyl]carbene complexes 1b and 1c (M=W, Cr, respectively), affording highly strained "dimers" 11/11' and "trimers" 12 of the carbene ligand. The first reaction step involved the formation of 1-metalla1,3,5-hexatrienes 7, which readily gave tetrahydroindenes 8 by pi cyclization and extrusion of the metal unit. "Dimers" 11/11' were generated from tetrahydroindenes 8 by a highly exo selective [4+2] cycloaddition of compounds 1b and 1c to afford 1-metalla-1,3,5-hexatriene intermediates 9, and a spontaneous pi cyclization of the latter compounds involving the disengagement of the metal unit. Propenylidene cyclohexenes 13/13' were formed in "ene"-type side reactions to the pi cyclization of 1-metalla-1,3,5-hexatrienes 7, by loss of the metal unit. "Dimers" 11 were transformed into "trimers" 12 by a [4+2] cycloaddition and subsequent pi-cyclization of the resulting 1-metalla-1,3,5-hexatriene system. The course of the reaction was elucidated by means of model reactions with (2-phenylethynyl)carbene complex 14, in which 1-metalla-1,3,5-hexatriene intermediates 16 and 17 were isolated and characterized. Alkynyl benzene derivatives 19 were obtained by an unprecedented ring-expansion of a cyclopentadiene unit of "dimers" 11a and 11c, involving the insertion of a carbene carbon atom of compound 14 into a C=C bond. A reaction cascade leading to "dimers" 24/24' could also be triggered by treatment of compounds 2 with [2-(1-cycloheptenyl)ethynyl]carbene tungsten complex 1d.  相似文献   

17.
The eight diastereoisomeric transition structures of the Diels-Alder addition of ethyl-S-lactyl acrylate and cyclopentadiene have been investigated in the gas phase and in solution by HF, MP2, and density functional theory (B3LYP and B3PW91) methods with the 6-31G(d,p) basis set. At all levels of theory used, the s-cis transition structures are more stable than the s-trans ones. The contribution of the s-trans transition structures increases in solution and, although still small, has to be taken in consideration for correct prediction of stereoselectivity. Diastereofacial selectivity is interpreted in terms of electrostatic (weak hydrogen bonding) C=O...H(C) interactions between the carbonyl group(s) of the dienophile and cyclopentadiene in the energetically favored transition structures. Endo/exo reaction selectivity is attributed to positive orbital interactions between the diene and the acrylate carbonyl oxygen in the endo s-cis transition structures. Ab initio methods reproduce well the experimentally observed trends in both endo/exo and diastereofacial selectivity. Density functional calculations in the gas phase correctly reproduce the observed trends in diastereofacial selectivity but single-point MP2 calculations are necessary to reproduce the experimental trend in endo/exo selectivity.  相似文献   

18.
RB3LYP calculations, on reaction of performic acid with cyclic allylic alcohols, demonstrate that the less stable s-trans conformer of peroxy acids can be involved in epoxidations of C=C bonds. Transition structures (TSs) arising from s-trans performic acid retain some of the well-established characteristics of the TSs of the s-cis isomer such as the perpendicular orientation of the O-H peroxy acid bond relative to the C=C bond and a one-step oxirane ring formation. These TSs are very asynchronous but collapse directly (without formation of any intermediate) to the final epoxide-peroxy acid complex via a 1,2-H shift. Thus, our findings challenge the traditional mechanism of peroxy acid epoxidation of C=C bonds by demonstrating that the involvement of the s-trans isomer opens an alternative one-step reaction channel characterized by a 1,2-H transfer. This novel reaction pathway can even overcome, in the case of the reaction of cyclic allylic alcohols in moderately polar solvents (e.g., in dichloromethane), the classical Bartlett's mechanism that is based on the s-cis peroxy acid form and that features a 1,4-H shift. However, the latter mechanism remains strongly favored for the epoxidation of normal alkenes.  相似文献   

19.
The three pathways postulated for 1,3-migration of the peroxyl group in the allylperoxyl radical (1a), a key reaction involved in the spontaneous autoxidation of unsaturated lipids of biological importance, have been investigated by means of quantum mechanical electronic structure calculations. According to the barrier heights calculated from RCCSD(T)/6-311+G(3df,2p) energies with optimized molecular geometries and harmonic vibrational frequencies determined at the UMP2/6-311+G(3df,2p) level, the allylperoxyl rearrangement proceeds by fragmentation of 1a through a transition structure (TS1) with a calculated DeltaH++(298 K) of 21.7 kcal/mol to give an allyl radical-triplet dioxygen loosely bound complex (CX). In a subsequent step, the triplet dioxygen moiety of CX recombines at either end of the allyl radical moiety to convert the complex to the rearranged peroxyl radical (1a') or to revert to the starting peroxyl radical 1a. CX shows an electron charge transfer of 0.026 e in the direction allyl --> O(2). The dominant attractive interactions holding in association the allyl radical-triplet dioxygen pair in CX are due chiefly to dispersion forces. The DeltaH(298 K) for dissociation of CX in its isolated partners, allyl radical and triplet dioxygen, is predicted to be at least 1 kcal/mol. The formation of CX prevents the diffusion of its partners and maintains the stereocontrol along the fragmentation-recombination processes. The concerted 1,3-migration in allylperoxyl radical is predicted to take place through a five-membered ring peroxide transition structure (TS2) showing two long C-O bonds. The DeltaH++(298 K) calculated for this pathway is less favorable than the fragmentation-recombination pathway by 1.9 kcal/mol. The cyclization of 1a to give a dioxolanyl radical intermediate (2a) is found to proceed through a five-membered ring transition structure (TS3) with a calculated DeltaH++(298 K) of 33.9 kcal/mol. Thus, the sequence of ring closure 1a --> 2a and ring opening 2a --> 1a' is unlikely to play any significant role in allylperoxyl rearrangement 1a --> 1a'. In the three pathways investigated, the energy of the transition structure is predicted to be somewhat lower in either heptane or aqueous solution than in the gas phase. Although the energy lowering calculated for TS1 is smaller than the calculated for TS2 and TS3, it is very unlikely that the solvent effects may reverse the predicted preference of the fragmentation-recombination pathway over the concerted and stepwise ring closure-ring opening mechanisms.  相似文献   

20.
In order to understand conformational isomerism in methacryloyl bromide (MABR) in the ground (S(0)) and the first excited (S(1)) electronic states and to interpret the vibrational and electronic spectra of its conformers in the S(0) state, quantum mechanical calculations using Density Functional Theory (DFT) and RHF methods with extended basis sets 6-31G, 6-31G** and 6-311+G(d,p) have been conducted. In RHF calculations, electron correlation effects have been included at the M?ller-Plesset MP2 level. It is inferred that in both the electronic states the molecule may exist in two isomeric forms-s-trans and s-cis; the former being more stable than the later by about 1.629 kcal mol(-1) in the S(0) state and by about 2.218 kcal mol(-1) in the S(1) state. Electronic transition tends to increase the s-trans/s-cis and s-cis/s-trans, rotational barriers from 7.059 kcal mol(-1) (2468.1 cm(-1)) and 5.428 kcal mol(-1) (1897.8 cm(-1)) in S(0) state to 23.594 kcal mol(-1) (8249.4 cm(-1)) and 21.376 kcal mol(-1) (7473.9 cm(-1)) in the S(1) state. Completely optimized geometries of the two conformers in S(0) state reveal that while there is no significant difference in their bond lengths, some of the bond angles associated with COBr group are appreciably different. Electronic excitation tends to change both the bond lengths and bond angles. Based on suitably scaled DFT and RHF results obtained from the use of 6-31G** and 6-311+G(d,p) basis sets, a complete assignment is provided to the fundamental vibrational bands of both the s-trans and s-cis conformers in terms of frequency, form and intensity of vibrations and potential distribution across the symmetry coordinates in the S(0) state and a comparison has been made with experimental assignments. A theoretical prediction of the electronic transitions in the near UV-region in the two conformers and their tentative assignment has been provided on the basis of CI level calculations using 6-31G basis set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号