首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Electronic spectra of the gas-phase isoquinoline(+)-Ar and quinoline(+)-Ar complexes are recorded using photodissociation spectroscopy by monitoring the Ar loss channel. The D(3)←D(0) and D(4)←D(0) band origins for isoquinoline(+)-Ar are observed at 15245 ± 15 cm(-1) and 21960 ± 15 cm(-1), respectively, whereas for quinoline(+)-Ar they appear at 16050 ± 15 cm(-1) and 21955 ± 15 cm(-1), respectively. Strong vibronic progressions for the D(3)←D(0) band systems of both isoquinoline(+)-Ar and quinoline(+)-Ar are modeled and assigned in terms of ring deformation and carbon-carbon stretch vibrational modes using time-dependent density functional theory calculations in conjunction with Franck-Condon simulations. The properties of the isoquinoline(+) and quinoline(+) molecules are compared with those of the isoelectronic naphthalene(+) molecule. The existence of strong progressions in the visible spectra of isoquinoline(+)-Ar and quinoline(+)-Ar suggests that the corresponding isoquinoline(+) and quinoline(+) molecular cations are unlikely to be responsible for diffuse interstellar bands.  相似文献   

2.
IR spectra of phenol-Arn (PhOH-Arn) clusters with n=1 and 2 were measured in the neutral and cationic electronic ground states in order to determine the preferential intermolecular ligand binding motifs, hydrogen bonding (hydrophilic interaction) versus pi bonding (hydrophobic interaction). Analysis of the vibrational frequencies of the OH stretching motion, nuOH, observed in nanosecond IR spectra demonstrates that neutral PhOH-Ar and PhOH-Ar2 as well as cationic PhOH+-Ar have a pi-bound structure, in which the Ar atoms bind to the aromatic ring. In contrast, the PhOH+-Ar2 cluster cation is concluded to have a H-bound structure, in which one Ar atom is hydrogen-bonded to the OH group. This pi-->H binding site switching induced by ionization was directly monitored in real time by picosecond time-resolved IR spectroscopy. The pi-bound nuOH band is observed just after the ionization and disappears simultaneously with the appearance of the H-bound nuOH band. The analysis of the picosecond IR spectra demonstrates that (i) the pi-->H site switching is an elementary reaction with a time constant of approximately 7 ps, which is roughly independent of the available internal vibrational energy, (ii) the barrier for the isomerization reaction is rather low(<100 cm(-1)), (iii) both the position and the width of the H-bound nuOH band change with the delay time, and the time evolution of these spectral changes can be rationalized by intracluster vibrational energy redistribution occurring after the site switching. The observation of the ionization-induced switch from pi bonding to H bonding in the PhOH+-Ar2 cation corresponds to the first manifestation of an intermolecular isomerization reaction in a charged aggregate.  相似文献   

3.
The A-X electronic transition of C3-Ar, near 405 nm, has been studied by both laser-induced fluorescence and wavelength-resolved emission techniques. Emission spectra have been recorded from 14 vibrational levels of the A state of C3-Ar; these spectra consist of progressions in the ground state v2 and v4 vibrations (the in- and out-of-plane C3-bending motions, respectively). With increasing bending excitation, these ground state levels shift progressively downwards compared to those of free C3, indicating that the van der Waals complexes are becoming more tightly bound. The level structure of the two vibrations of C3-Ar has been fitted to a perturbed harmonic oscillator model, where the potential function has the form V = V1r cos theta + V2r2 cos 2theta (r is the amplitude of the C3-bending motion and theta gives the orientation of the rare gas atom relative to the plane of the bent C3 molecule). Ab initio calculations have been carried out for C3-Ar at the coupled-cluster singles, doubles (and triples)/correlation consistent polarization valence quadruple-zeta level. They predict that the C3-Ar complex is nearly T shaped at equilibrium, and that as the C3 molecule bends away from the linear configuration, the preferred orientation is "arrow" shaped. From the results of the best fit to the model and the emission spectral intensities, the relative orientation of the out-of-plane pi electron of the A-state complex and the Ar atom has been estimated. No bands of the Ar complex were found near the C3, A-X, (0,0) band, consistent with the fact that the A 1Piu, upsilon = 0 level of free C3 is strongly perturbed by triplet levels. In the excitation spectra of the Ar complex, the bands with upsilonb' > 0 show redshifts of about 16-36 cm(-1) compared to those of free C3, indicating that the A-state complex in these levels is more tightly bonded than the X-state complex.  相似文献   

4.
Mass analyzed threshold ionization spectroscopy is used to measure the Ar binding energy for the cationic aniline-Ar (An(+)-Ar) and aniline-Ar(2) (An(+)-Ar(2)) complexes. Since the experiments begin with the neutral species, photoexcitation creates the cations in the pi-bonding configuration with the Ar located above the phenyl ring. The binding energy in this conformation of the An(+)-Ar complex is determined to be 495+/-15 cm(-1). Measurements of An(+)-Ar(2) revealed the production of a lower energy dissociation product which is assigned to the An(+)-Ar H-bonding configuration. Combinations of measurements allow determination of the dissociation energy of this complex to be 640+/-20 cm(-1). The observation of a more stable H-bonded conformer is consistent with recent infrared experiments on An(+)-Ar complexes created by complexing An(+) with Ar, rather than creation through the neutral complex. Calculations are presented which closely reproduce the binding energy of the pi bound Ar but underestimate the stability of the H-bonded species.  相似文献   

5.
Infrared predissociation (IRPD) spectra of Li(+)(CH(4))(1)Ar(n), n = 1-6, clusters are reported in the C-H stretching region from 2800 to 3100 cm(-1). The Li(+) electric field perturbs CH(4) lifting its tetrahedral symmetry and gives rise to multiple IR active modes. The observed bands arise from the totally symmetric vibrational mode, v(1), and the triple degenerate vibrational mode, v(3). Each band is shifted to lower frequency relative to the unperturbed CH(4) values. As the number of argon atoms is increased, the C-H red shift becomes less pronounced until the bands are essentially unchanged from n = 5 to n = 6. For n = 6, additional vibrational features were observed which suggested the presence of an additional conformer. By monitoring different photodissociation loss channels (loss of three Ar or loss of CH(4)), one conformer was uniquely associated with the CH(4) loss channel, with two bands at 2914 and 3017 cm(-1), values nearly identical to the neutral CH(4) gas-phase v(1) and v(3) frequencies. With supporting ab initio calculations, the two conformers were identified, both with a first solvent shell size of six. The major conformer had CH(4) in the first shell, while the conformer exclusively present in the CH(4) loss channel had six argons in the first shell and CH(4) in the second shell. This conformer is +11.89 kJ/mol higher in energy than the minimum energy conformer at the MP2/aug-cc-pVDZ level. B3LYP/6-31+G* level vibrational frequencies and MP2/aug-cc-pVDZ level single-point binding energies, D(e) (kJ/mol), are reported to support the interpretation of the experimental data.  相似文献   

6.
The controversial nature of chemical bonding between noble gases and noble metals is addressed. Experimental evidence of exceptionally strong Au? Ar bonds in Ar complexes of mixed Au? Ag trimers is presented. IR spectra reveal an enormous influence of the attached Ar atoms on vibrational modes, particularly in Au‐rich trimers, where Ar atoms are heavily involved owing to a relativistically enhanced covalency. In Ag‐rich trimers, vibrational transitions of the metal framework predominate, indicating a pure electrostatic character of the Ag? Ar bonds. The experimental findings are analyzed by means of DFT calculations, which show how the relativistic differences between Au and Ag are manifested in stronger Au? Ar binding energies. Because of the ability to vary composition and charge distribution, the trimers serve as ideal model systems to study the chemical nature of the bonding of noble gases to closed‐shell systems containing gold.  相似文献   

7.
Electronic excitation spectra of the S(1)← S(0) transition obtained by resonance-enhanced two-photon ionization (REMPI) are analysed for phenol-Ar(n) (PhOH-Ar(n)) clusters with n≤ 4. An additivity rule has been established for the S(1) origin shifts upon sequential complexation at various π binding sites, which has allowed for the identification of two less stable isomers not recognized previously, namely the (2/0) isomer for n = 2 and the (2/1) isomer for n = 3. Infrared (IR) spectra of neutral PhOH-Ar(n) and cationic PhOH(+)-Ar(n) clusters are recorded in the vicinity of the OH and CH stretch fundamentals (ν(OH), ν(CH)) in their S(0) and D(0) ground electronic states using IR ion dip spectroscopy. The small monotonic spectral redshifts Δν(OH) of about -1 cm(-1) per Ar atom observed for neutral PhOH-Ar(n) are consistent with π-bonded ligands. In contrast, the IR spectra of the PhOH(+)-Ar(n) cations generated by resonant photoionization of the neutral precursor display the signature of H-bonded isomers, suggesting that ionization triggers an isomerization reaction, in which one of the π-bonded Ar ligands moves to the more attractive OH site. The dynamics of this isomerization reaction is probed for PhOH(+)-Ar(3) by picosecond time-resolved IR spectroscopy. Ionization of the (3/0) isomer of PhOH(+)-Ar(3)(3π) with three π-bonded Ar ligands on the same side of the aromatic ring induces a π→ H switching reaction toward the PhOH(+)-Ar(3)(H/2π) isomer with a time constant faster than 3 ps. Fast intracluster vibrational energy redistribution prevents any H →π back reaction.  相似文献   

8.
9.
By preparing ethylene [C2H4(X1Ag)] in selected rotational levels of the nu11(b1u), nu2+nu12(b1u), or nu9(b2u) vibrational state with infrared (IR) laser photoexcitation prior to vacuum ultraviolet (VUV) laser photoionization, we have recorded rotationally resolved pulsed field ionization-photoelectron (PFI-PE) spectra for C2H4+(X2B3u) in the energy region of 0-3000 cm(-1) above the ionization energy (IE) of C2H4(X1Ag). Here, nu2(ag), nu9(b2u), nu11(b1u), and nu12(b1u) represent the C-C stretching, CH2 stretching, CH2 stretching, and CH2 bending modes of C2H4(X1Ag), respectively. The fully rovibrationally resolved spectra have allowed unambiguous symmetry assignments of the observed vibrational bands, which in turn have provided valuable information on the photoionization dynamics of C2H4. The IR-VUV photoionization of C2H4(X1Ag) via the nu11(b1u) or nu2+nu12(b1u) vibrational states is found to predominantly produce vibrational states of C2H4+(X2B3u) with b1u symmetry, which cannot be observed in single-photon VUV-PFI-PE measurements of C2H4(X1Ag). The analysis of the observed IR-VUV-PFI-PE bands has provided the IE(C2H4) = 84,790.2(2) cm(-1) and accurate vibrational frequencies for the nu4+(au)[84.1(2) cm(-1)], nu12+(b1u)[1411.7(2) cm(-1)], nu4+ +nu12+(b1g)[1482.5(2) cm(-1)], nu2+(ag)[1488.3(2) cm(-1)], nu2+ + nu4+(au)[1559.2(2) cm(-1)], 2nu4+ + nu12 +(b1u)[1848.5(2) cm(-1)], 4nu4+ + nu12 +(b1u)[2558.8(2) cm(-1)], nu2+ + nu12 +(b1u)[2872.7(2) cm(-1)], and nu11+(b1u)[2978.7(2) cm(-1)] vibrational states of C2H4+(X2B3u), where nu4+ is the ion torsional state. The IE(C2H4) and the nu4+(au), nu2+(ag), and nu2+ + nu4+ (au) frequencies are in excellent accord with those obtained in previous single-photon VUV-PFI-PE measurements. The other ion vibrational frequencies represent new experimental determinations. We have also performed high-level ab initio anharmonic vibrational frequency calculations for C2H4(X1Ag) and C2H4+(X2B3u) at the CCSD(T)/aug-cc-pVQZ level for guidance in the assignment of the IR-VUV-PFI-PE spectra. All theoretical vibrational frequencies for the neutral and ion, except the ion torsional frequency, are found to agree with experimental vibrational frequencies to better than 1%.  相似文献   

10.
Infrared spectra of various OH+ and H2O+ isotopomers solvated in solid argon are presented. The OH+ and H2O+ cations were produced by co-deposition of H2O/Ar mixture with high-frequency discharged Ar at 4 K. Detailed isotopic substitution studies confirm the assignments of absorptions at 3054.9 and 3040.0 cm(-1) to the antisymmetric and symmetric H-O-H stretching vibrations of H2O+ and 2979.6 cm(-1) to the O-H stretching vibration of OH+. The frequencies of H2O+ solvated in solid argon are red-shifted, whereas the frequency of OH+ is blue-shifted with respect to the gas-phase fundamentals. On the basis of previous gas-phase studies and quantum chemical calculations, the OH+ and H2O+ cations solvated in solid argon may be regarded as the OH+-Ar5 and H2O+-Ar4 complexes isolated in the argon matrix.  相似文献   

11.
This work demonstrates that the most stable structures of even small gas-phase aggregates of cerium oxide with 2-5 cerium atoms show structural motifs reminiscent of the bulk ceria. This is different from main group and transition metal oxide clusters, which often display structural features that are distinctly different from the bulk structure. The structures of Ce(2)O(2)(+), Ce(3)O(4)(+), and (CeO(2))(m)CeO(+) clusters (m = 0-4) are unambiguously determined by a combination of global structure optimizations at the density functional theory level and infrared vibrational predissociation spectroscopy of the cluster-rare gas atom complexes. The structures of Ce(2)O(2)(+) and Ce(2)O(3)(+) exhibit a Ce-O-Ce-O four-membered ring with characteristic absorptions between 430 and 680 cm(-1). Larger clusters have common structural features containing fused Ce-O-Ce-O four-membered rings which lead to intense absorption bands at around 500 and 650 cm(-1). Clusters containing a terminal Ce=O bond show a characteristic absorption band between 800 and 840 cm(-1). For some cluster sizes multiple isomers are observed. Their individual infrared signatures are identified by tuning their relative population through the choice of He, Ne or Ar messenger atoms. The present results allow us to benchmark different density functionals which yield different degrees of localization of unpaired electrons in Ce 4f states.  相似文献   

12.
Ni+ (benzene)n (n = 1-6) and Ni+ (benzene)n Ar(1,2) (n = 1,2) are produced by laser vaporization in a pulsed nozzle cluster source. The clusters are mass selected and studied by infrared laser photodissociation spectroscopy in a reflectron time-of-flight mass spectrometer. The excitation laser is an OPO/OPA system that produces tunable IR in the C-H stretching region of benzene. Photodissociation of Ni+ (benzene)n complexes occurs by the elimination of intact neutral benzene molecules, while Ni+ (benzene)n Ar(1,2) complexes lose Ar. This process is enhanced on resonances, and the vibrational spectrum is obtained by monitoring the fragment yield versus the infrared wavelength. Vibrational bands in the 2700-3300 cm(-1) region are characteristic of the benzene molecular moiety with systematic shifts caused by the metal bonding. A dramatic change in the IR spectrum is seen at n = 3 and is attributed to the presence of external benzene molecules acting as solvent molecules in the cluster. The results of previous theoretical calculations are employed to investigate the structures, energetics, and vibrational frequencies of these complexes. The mono-benzene complex is found to have a C2v structure, with benzene distorted by the metal pi-bonding. The di-benzene complex is found to have a D2h structure, with both benzenes distorted. The comparison between experiment and theory provides intriguing new insight into the bonding in these prototypical pi-bonded organometallic complexes.  相似文献   

13.
We report velocity map imaging measurements of the binding energies, D(0), of NO-Rg (Rg = He, Ne, Ar) complexes. The X state binding energies determined are 3.0 ± 1.8, 28.6 ± 1.7, and 93.5 ± 0.9 cm(-1) for NO-He, -Ne, and -Ar, respectively. These values compare reasonably well with ab initio calculations. Because the ?-X transitions were unable to be observed for NO-He and NO-Ne, values for the binding energies in the ? state of these complexes have not been determined. Based on our X state value and the reported ?-X origin band position, the ? state binding energy for NO-Ar was determined to be 50.6 ± 0.9 cm(-1).  相似文献   

14.
We present gas phase vibrational spectra of the trinuclear vanadium oxide cations V(3)O(6)(+)·He(1-4), V(3)O(7)(+)·Ar(0,1), and V(3)O(8)(+)·Ar(0,2) between 350 and 1200 cm(-1). Cluster structures are assigned based on a comparison of the experimental and simulated IR spectra. The latter are derived from B3LYP/TZVP calculations on energetically low-lying isomers identified in a rigorous search of the respective configurational space, using higher level calculations when necessary. V(3)O(7)(+) has a cage-like structure of C(3v) symmetry. Removal or addition of an O-atom results in a substantial increase in the number of energetically low-lying structural isomers. V(3)O(8)(+) also exhibits the cage motif, but with an O(2) unit replacing one of the vanadyl oxygen atoms. A chain isomer is found to be most stable for V(3)O(6)(+). The binding of the rare gas atoms to V(3)O(6-8)(+) clusters is found to be strong, up to 55 kJ/mol for Ar, and markedly isomer-dependent, resulting in two interesting effects. First, for V(3)O(7)(+)·Ar and V(3)O(8)(+)·Ar an energetic reordering of the isomers compared to the bare ion is observed, making the ring motif the most stable one. Second, different isomers bind different number of rare gas atoms. We demonstrate how both effects can be exploited to isolate and assign the contributions from multiple isomers to the vibrational spectrum. The present results exemplify the structural variability of vanadium oxide clusters, in particular, the sensitivity of their structure on small perturbations in their environment.  相似文献   

15.
Singly and doubly charged manganese-water cations, and their mixed complexes with attached argon atoms, are produced by laser vaporization in a pulsed nozzle source. Complexes of the form Mn(+)(H(2)O)Ar(n) (n = 1-4) and Mn(2+)(H(2)O)Ar(4) are studied via mass-selected infrared photodissociation spectroscopy, detected in the mass channels corresponding to the elimination of argon. Sharp resonances are detected for all complexes in the region of the symmetric and asymmetric stretch vibrations of water. With the guidance of density functional theory computations, specific vibrational band resonances are assigned to complexes having different argon attachment configurations. In the small singly charged complexes, argon adds first to the metal ion site and later in larger clusters to the hydrogens of water. The doubly charged complex has argon only on the metal ion. Vibrations in all of these complexes are shifted to lower frequencies than those of the free water molecule. These shifts are greater when argon is attached to hydrogen and also greater for the dication compared to the singly charged species. Cation binding also causes the IR intensities for water vibrations to be much greater than those of the free water molecule, and the relative intensities are greater for the symmetric stretch than the asymmetric stretch. This latter effect is also enhanced for the dication complex.  相似文献   

16.
HXeCCH molecule is prepared in Ar and Kr matrices and characterized by IR absorption spectroscopy. The experiments show that HXeCCH can be made in another host than the polarizable Xe environment. The H-Xe stretching absorption of HXeCCH in Ar and Kr is blueshifted from the value measured in solid Xe. The maximum blueshifts are +44.9 and +32.3 cm(-1) in Ar and Kr, respectively, indicating stabilization of the H-Xe bond. HXeCCH has a doublet H-Xe stretching absorption measured in Xe, Kr, and Ar matrices with a splitting of 5.7, 13, and 14 cm(-1), respectively. Ab initio calculations for the 1:1 HXeCCHcdots, three dots, centeredNg complexes (Ng = Ar, Kr, or Xe) are used to analyze the interaction of the hosts with the embedded molecule. These calculations support the matrix-site model where the band splitting observed experimentally is caused by specific interactions of the HXeCCH molecule with noble-gas atoms in certain local morphologies. However, the 1:1 complexation is unable to explain the observed blueshifts of the H-Xe stretching band in Ar and Kr matrices compared to a Xe matrix. More sophisticated computational approach is needed to account in detail the effects of solid environment.  相似文献   

17.
A series of symmetric divalent Sn(II) hydrides of the general form [(4-X-Ar')Sn(mu-H)]2 (4-X-Ar' = C6H2-4-X-2,6-(C6H3-2,6-iPr2)2; X = H, MeO, tBu, and SiMe3; 2, 6, 10, and 14), along with the more hindered asymmetric tin hydride (3,5-iPr2-Ar*)SnSn(H)2(3,5-iPr2-Ar*) (16) (3,5-iPr2-Ar* = 3,5-iPr2-C6H-2,6-(C6H2-2,4,6-iPr3)2), have been isolated and characterized. They were prepared either by direct reduction of the corresponding aryltin(II) chloride precursors, ArSnCl, with LiBH4 or iBu2AlH (DIBAL), or via a transmetallation reaction between an aryltin(II) amide, ArSnNMe2, and BH3.THF. Compounds 2, 6, 10, and 14 were obtained as orange solids and have centrosymmetric dimeric structures in the solid state with long Sn...Sn separations of 3.05 to 3.13 A. The more hindered tin(II) hydride 16 crystallized as a deep-blue solid with an unusual, formally mixed-valent structure wherein a long Sn-Sn bond is present [Sn-Sn = 2.9157(10) A] and two hydrogen atoms are bound to one of the tin atoms. The Sn-H hydrogen atoms in 16 could not be located by X-ray crystallography, but complementary M?ssbauer studies established the presence of divalent and tetravalent tin centers in 16. Spectroscopic studies (IR, UV-vis, and NMR) show that, in solution, compounds 2, 6, 10, and 14 are predominantly dimeric with Sn-H-Sn bridges. In contrast, the more hindered hydrides 16 and previously reported (Ar*SnH)2 (17) (Ar* = C6H3-2,6-(C6H2-2,4,6-iPr3)2) adopt primarily the unsymmetric structure ArSnSn(H)2Ar in solution. Detailed theoretical calculations have been performed which include calculated UV-vis and IR spectra of various possible isomers of the reported hydrides and relevant model species. These showed that increased steric hindrance favors the asymmetric form ArSnSn(H)2Ar relative to the centrosymmetric isomer [ArSn(mu-H)]2 as a result of the widening of the interligand angles at tin, which lowers steric repulsion between the terphenyl ligands.  相似文献   

18.
Fluorescence excitation spectra and wavelength-resolved emission spectra of the C(3)-Kr and C(3)-Xe van der Waals (vdW) complexes have been recorded near the 2(2-)(0), 2(2+)(0), 2(4-)(0), and 1(1)(0) bands of the A?(1)Π(u)-X?(1)Σ(g)(+) system of the C(3) molecule. In the excitation spectra, the spectral features of the two complexes are red-shifted relative to those of free C(3) by 21.9-38.2 and 34.3-36.1 cm(-1), respectively. The emission spectra from the A? state of the Kr complex consist of progressions in the two C(3)-bending vibrations (ν(2), ν(4)), the vdW stretching (ν(3)), and bending vibrations (ν(6)), suggesting that the equilibrium geometry in the X? state is nonlinear. As in the Ar complex [Zhang et al., J. Chem. Phys. 120, 3189 (2004)], the C(3)-bending vibrational levels of the Kr complex shift progressively to lower energy with respect to those of free C(3) as the bending quantum number increases. Their vibrational structures could be modeled as perturbed harmonic oscillators, with the dipole-induced dipole terms of the Ar and Kr complexes scaled roughly by the polarizabilities of the Ar and Kr atoms. Emission spectra of the Xe complex, excited near the A?, 2(2-) level of free C(3), consist only of progressions in even quanta of the C(3)-bending and vdW modes, implying that the geometry in the higher vibrational levels (υ(bend) ≥ 4, E(vib) ≥ 328 cm(-1)) of the X? state is (vibrationally averaged) linear. In this structure the Xe atom bonds to one of the terminal carbons nearly along the inertial a-axis of bent C(3). Our ab initio calculations of the Xe complex at the level of CCSD(T)∕aug-cc-pVTZ (C) and aug-cc-pVTZ-PP (Xe) predict that its equilibrium geometry is T-shaped (as in the Ar and Kr complexes), and also support the assignment of a stable linear isomer when the amplitude of the C(3) bending vibration is large (υ(4) ≥ 4).  相似文献   

19.
The intermolecular potential energy surface (PES) of Ar interacting with the acetylene cation in its (2)Pi(u) ground electronic state is characterized by infrared photodissociation (IRPD) spectroscopy and quantum chemical calculations. In agreement with the theoretical predictions, the rovibrational analysis of the IRPD spectrum of C(2)H(2) (+)-Ar recorded in the vicinity of the antisymmetric CH stretching fundamental (nu(3)) is consistent with a vibrationally averaged T-shaped structure and a ground-state center-of-mass separation of R(c.m.) = 2.86 +/- 0.09 A. The nu(3) band experiences a blueshift of 16.7 cm(-1) upon complexation, indicating that vibrational excitation slightly reduces the interaction strength. The two-dimensional intermolecular PES of C(2)H(2) (+)-Ar, obtained from coupled cluster calculations with a large basis set, features strong angular-radial coupling and supports in addition to a global pi-bound minimum also two shallow side wells with linear H-bound geometries. Bound state rovibrational energy level calculations are carried out for rotational angular momentum J = 0-10 (both parities) employing a discrete variable representation-distributed Gaussian basis method. Effective spectroscopic constants are determined for the vibrational ground state by fitting the calculated rotational energies to the standard Watson A-type Hamiltonian for a slightly asymmetric prolate top.  相似文献   

20.
The 2-diazo-5,5-dimethyl-cyclohexane-1,3-dione (3) was synthesized and the FT-IR/Raman spectra were measured with the purpose of obtain a full assignment of the vibrational modes. Singular aspects concerning the -CNN oscillator are discussed in view of two strong bands observed in the region of 2300-2100 cm(-1) in both, Infrared and Raman spectra. The density functional theory (DFT) was used to obtain the geometrical structure and for assisting in the vibrational assignment joint to the traditional normal coordinate analysis (NCA). The observed wavenumbers at 2145 (IR), 2144(R) are assigned as the coupled nu(NN)+nu(CN) vibrational mode with higher participation of the NN stretching. A 2188 cm(-1) (IR) and at 2186 cm(-1) (R) can be assigned as a overtone of one of nu(CC) normal mode or to a combination band of the fundamentals delta(CCH) found at 1169 cm(-1) and the delta (CCN) found at 1017 cm(-1) enhanced by Fermi resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号