首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two Ru(III) complexes, [Ru(PaPy(3))(Cl)](BF(4)) (2) and [Ru(PaPy(3))(NO)](BF(4))(2) (3) (PaPy(3)H = N,N'-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide), have been synthesized and characterized by spectroscopy and X-ray diffraction. Nitrosyl complex 3 has been prepared by passage of purified NO gas to the hot methanolic solution of the chloro derivative 2. Complex 3 exhibits nu(NuOmicron) stretching frequency at 1899 cm(-)(1) indicating a [Ru-NO](6) configuration. Clean (1)H NMR spectra of 3 in D(2)O and CD(3)CN confirm the S = 0 ground state. When an aqueous solution of [Ru(PaPy(3))(NO)](BF(4))(2) is exposed to low intensity UV light, it rapidly loses NO and forms [Ru(PaPy(3))(H(2)O)](2+). This reaction can be conveniently used to transfer NO to proteins such as myoglobin (Mb) and cytochrome c oxidase. The NO transfer reaction is clean and occurs upon short exposure to light.  相似文献   

3.
Aerobic oxidation of the Mn(II) complex [Mn(Papy3)(H2O)](ClO4) (1, PaPy3- is the anion of the designed ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) in acetonitrile affords the (mu-oxo)dimanganese(III) complex [(Mn(PaPy3))2(mu-O)](ClO4)2 (3) in high yield. The unsupported single oxo bridge between the two high-spin Mn(III) centers in 3 is readily cleaved upon addition of proton sources such as phenol, acetic acid, and benzoic acid, and complexes of the type [Mn(PaPy3)(L)](ClO4) (5, L = PhO-; 6, L = AcO-; 7, L = BzO-) are formed. The basicity of the bridge is evident by the fact that simple addition of methanol to a solution of 3 in acetonitrile affords the methoxide complex [Mn(PaPy3)(OMe)](ClO4) (4). The structures of 3-5 and 7 have been determined. Passage of NO through a solution of 3 in acetonitrile produces the [Mn-NO]6 nitrosyl [Mn(PaPy3)(NO)](ClO4) (2) via reductive nitrosylation. Complexes 4-7 also afford the [Mn-NO]6 nitrosyl 2 upon reaction with NO. In the latter case, the anionic O-based ligands (such as MeO- and PhO-) act as built-in bases and promote reductive nitrosylation of the Mn(III) complexes.  相似文献   

4.
Two new manganese complexes derived from the pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide, PaPy2QH, where H is dissociable proton), namely, [Mn(PaPy2Q)(NO)]ClO4 (2) and [Mn(PaPy2Q)(OH)]ClO4 (3), have been synthesized and structurally characterized. The Mn(III) complex [Mn(PaPy2Q)(OH)]ClO4 (3), though insensitive to dioxygen, reacts with nitric oxide (NO) to afford the nitrosyl complex [Mn(PaPy2Q)(NO)]ClO4 (2) via reductive nitrosylation. This diamagnetic {Mn-NO}6 nitrosyl exhibits nuNO at 1725 cm-1 and is highly soluble in water, with lambdamax at 500 and 670 nm. Exposure of solutions of 2 to near-infrared (NIR) light (810 nm, 4 mW) results in bleaching of the maroon solution and detection of free NO by an NO-sensitive electrode. The quantum yield of 2 (Phi = 0.694 +/- 0.010, lambdairr = 550 nm, H2O) is much enhanced over the first generation {Mn-NO}6 nitrosyl derived from analogous polypyridine ligand, namely, [Mn(PaPy3)(NO)]ClO4 (1, Phi = 0.385 +/- 0.010, lambdairr = 550 nm, H2O), reported by this group in a previous account. Although quite active in the visible range (500-600 nm), 1 exhibits very little photoactivity under NIR light. Both 1 and 2 have been incorporated into sol-gel (SG) matrices to obtain nitrosyl-polymer composites 1.SG and 2.SG. The NO-donating capacities of the polyurethane-coated hybrid materials 1.HM and 2.HM have been determined. 2.HM has been used to transfer NO to reduced myoglobin with 780 nm light. The various strategies for synthesizing photosensitive metal nitrosyls have been discussed to establish the merits of the present approach. The results of the present study confirm that proper ligand design is a very effective way to isolate photoactive manganese nitrosyls that could be used to deliver NO to biological targets under the control of NIR light.  相似文献   

5.
Lin CH  Chen CG  Tsai ML  Lee GH  Liaw WF 《Inorganic chemistry》2008,47(23):11435-11443
The reaction of MnBr(2) and [PPN](2)[S,S-C(6)H(3)-R] (1:2 molar ratio) in THF yielded [(THF)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (1a), Me (1b); THF = tetrahydrofuran]. Formation of the dimeric [Mn(S,S-C(6)H(3)-R)(2)](2)(2-) [R = H (2a), Me (2b)] was presumed to compensate for the electron-deficient Mn(III) core via two thiolate bridges upon dissolution of complexes 1a and 1b in CH(2)Cl(2). Complex 2a displays antiferromagnetic coupling interaction between two Mn(III) centers (J = -52 cm(-1)), with the effective magnetic moment (mu(eff)) increasing from 0.85 mu(B) at 2.0 K to 4.86 mu(B) at 300 K. The dianionic manganese(II) thiolate complexes [Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (3a), Me (3b)] were isolated upon the addition of [BH(4)](-) into complexes 1a and 1b or complexes 2a and 2b, respectively. The anionic mononuclear {Mn(NO)}(5) thiolatonitrosylmanganese complexes [(NO)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (4a), Me (4b)] were obtained from the reaction of NO(g) with the anionic complexes 1a and 1b, respectively, and the subsequent reduction of complexes 4a and 4b yielded the mononuclear {Mn(NO)}(6) [(NO)Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (5a), Me (5b)]. X-ray structural data, magnetic susceptibility measurement, and magnetic fitting results imply that the electronic structure of complex 4a is best described as a resonance hybrid of [(L)(L)Mn(III)(NO(*))](-) and [(L)(L(*))Mn(III)(NO(-))](-) (L = 1,2-benzenedithiolate) electronic arrangements in a square-pyramidal ligand field. The lower IR v(NO) stretching frequency of complex 5a, compared to that of complex 4a (shifting from 1729 cm(-1) in 4a to 1651 cm(-1) in 5a), supports that one-electron reduction occurs in the {(L)(L(*))Mn(III)} core upon reduction of complex 4a.  相似文献   

6.
The reactions of neutral or cationic manganese carbonyl species towards the oxo-nitrosyl complex [Na(MeOH)[Mo(5)O(13)(OCH(3))(4)(NO)]](2-) have been investigated in various conditions. This system provides an unique opportunity for probing the basic reactions involved in the preparation of solid oxide-supported heterogeneous catalysts, that is, mobility of transition-metal species at the surface and dissolution-precipitation of the support. Under nitrogen and in the dark, the reaction of in situ generated fac-[Mn(CO)(3)](+) species with (nBu(4)N)(2)[Na(MeOH)-[Mo(5)O(13)(OMe)(4)(NO)]] in MeOH yields (nBu(4)N)(2)[Mn(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] at room temperature, while (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)] is obtained under reflux. The former transforms into the latter under reflux in methanol in the presence of sodium bromide; this involves the migration of the fac-[Mn(CO)(3)](+) moiety from a basal kappa(2)O coordination site to a lateral kappa(3)O site. Oxidation and decarbonylation of manganese carbonyl species as well as degradation of the oxonitrosyl starting material and reaggregation of oxo(methoxo)molybdenum fragments occur in non-deareated MeOH, and both (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)] and (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] as well as (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been obtained in this way. The rhenium analogue (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] has also been synthesized. The crystal structures of (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]], (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] and (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been determined.  相似文献   

7.
Described are studies directed toward elucidating the controversial chemistry relating to the solution phase reactions of nitric oxide with the iron(II) porphyrin complex Fe(TPP)(NO) (1, TPP = meso-tetraphenylporphinato2-). The only reaction observable with clean NO is the formation of the diamagnetic dinitrosyl species Fe(TPP)(NO)2 (2), and this is seen only at low temperatures (K(1) < 3 M(-1) at ambient temperature). However, 1 does readily react reversibly with N2O3 in the presence of excess NO to give the nitro nitrosyl complex Fe(TPP)(NO2)(NO) (3), suggesting that previous claims that 1 promotes NO disproportionation to give 3 may have been compromised by traces of air in the nitric oxide sources. It is also noted that 3 undergoes reversible loss of NO to give the elusive nitro species Fe(TPP)(NO2) (4), which has been implicated as a powerful oxygen atom transfer agent in reactions with various substrates. Furthermore, in the presence of excess NO2, the latter undergoes oxidation to the stable nitrato analogue Fe(TPP)(NO3) (5). Owing to such reactivity of Fe(TPP)(NO2), flash photolysis and stopped-flow kinetics rather than static techniques were necessary for the accurate measurement of dissociation equilibria characteristic of Fe(TPP)(NO2)(NO) in 298 K toluene solution. Flash photolysis of 3 resulted in competitive NO2 and NO dissociation to give Fe(TPP)(NO) and Fe(TPP)(NO2), respectively. The rate constant for the reaction of 1 with N2O3 to generate Fe(TPP)(NO2)(NO) was determined to be 1.8 x 10(6) M(-1) s(-1), and that for the NO reaction with 4 was similarly determined to be 4.2 x 10(5) M(-1) s(-1). Stopped-flow rapid dilution techniques were used to determine the rate constant for NO dissociation from 3 as 2.6 s(-1). The rapid dilution experiments also demonstrated that Fe(TPP)(NO2) readily undergoes further oxidation to give Fe(TPP)(NO3). The mechanistic implications of these observations are discussed, and it is suggested that NO2 liberated spontaneously from Fe(P)(NO2) may play a role in an important oxidative process involving this elusive species.  相似文献   

8.
The iron nitrosyl [(PaPy2Q)Fe(NO)](ClO4)2 (2), derived from the quinoline-based ligand PaPy2QH (N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide, where H is dissociable proton) has been characterized by spectroscopy and X-ray diffraction techniques. The 1H NMR spectrum (S = 0 ground state) and v(NO) value of 1885 cm(-1) indicate that 2 is a [Fe-NO]6 nitrosyl. Although 2 is stable in the dark, exposure of an acetonitrile solution of 2 (lambdamax = 510 nm) to light in the visible range causes rapid release of NO and formation of the solvato species [(PaPy2Q)Fe(MeCN)](ClO4)2 (6). Quantum yield (Phi) measurements indicate that 2 is a more efficient NO donor (Phi = 0.258) than [(PaPy3)Fe(NO)](ClO4)2 (1, Phi = 0.185), a complex derived from a similar but pyridine-based ligand. Interestingly, when the photoproduct 6 is exposed to water or a small amount of base, the triply bridged diiron(III) species [(PaPy2Q)FeOFe(PaPy2Q)](ClO4)2 (3) forms in good yield. This species can be independently synthesized from aerobic oxidation of the Fe(II) species [(PaPy2Q)Fe(MeCN)](ClO4) in acetonitrile. The structure of 3 reveals a unique Fe(III)-O-Fe(III) link supported by two (eta2,mu2)mu-NCO bridges derived from the carboxamido groups of the two (PaPy2Q)Fe(III) moieties.  相似文献   

9.
Three iron complexes of a pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy(3)H, H is the dissociable amide proton) have been synthesized. All three species, namely, two nitrosyls [(PaPy(3))Fe(NO)](ClO(4))(2) (2) and [(PaPy(3))Fe(NO)](ClO(4)) (3) and one nitro complex [(PaPy(3))Fe(NO(2))](ClO(4)) (4), have been structurally characterized. These complexes provide the opportunity to compare the structural and spectral properties of a set of isostructural [Fe-NO](6,7) complexes (2 and 3, respectively) and an analogous genuine Fe(III) complex with an "innocent" sixth ligand ([(PaPy(3))Fe(NO(2))](ClO(4)), 4). The most striking difference in the structural features of 2 and 3 is the Fe-N-O angle (Fe-N-O = 173.1(2) degrees in the case of 2 and 141.29(15) degrees in the case of 3). The clean (1)H NMR spectrum of 2 in CD(3)CN reveals its S = 0 ground state and confirms its [Fe-NO](6) configuration. The binding of NO at the non-heme iron center in 2 is completely reversible and the bound NO is photolabile. M?ssbauer data, electron paramagnetic resonance signal at g approximately 2.00, and variable temperature magnetic susceptibility measurements indicate the S = (1)/(2) spin state of the [Fe-NO](7) complex 3. Analysis of the spectroscopic data suggests Fe(II)-NO(+) and Fe(II)-NO(*) formulations for 2 and 3, respectively. The bound NO in 3 does not show any photolability. However, in MeCN solution, it reacts rapidly with dioxygen to afford the nitro complex 4, which has also been synthesized independently from [(PaPy(3))Fe(MeCN)](2+) and NO(2)(-). Nucleophilic attack of hydroxide ion to the N atom of the NO ligand in 2 in MeCN in the dark gives rise to 4 in high yield.  相似文献   

10.
The Mn-nitrosyl complexes [Mn(PaPy(3))(NO)](ClO(4)) (1; PaPy(3)(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) and [Mn(PaPy(2)Q)(NO)](ClO(4)) (2, PaPy(2)Q(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide) show a remarkable photolability of the NO ligand upon irradiation of the complexes with UV-vis-NIR light [Eroy-Reveles, A. A.; Leung, Y.; Beavers, C. M.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 2008, 130, 4447]. Here we report detailed spectroscopic and theoretical studies on complexes 1 and 2 that provide key insight into the mechanism of NO photolabilization in these compounds. IR- and FT-Raman spectroscopy show N-O and Mn-NO stretching frequencies in the 1720-1750 and 630-650 cm(-1) range, respectively, for these Mn-nitrosyls. The latter value for ν(Mn-NO) is one of the highest transition-metal-NO stretching frequencies reported to this date, indicating that the Mn-NO bond is very strong in these complexes. The electronic structure of 1 and 2 is best described as Mn(I)-NO(+), where the Mn(I) center is in the diamagnetic low-spin state and the NO(+) ligand forms two very strong π backbonds with the d(xz) and d(yz) orbitals of the metal. This explains the very strong Mn-NO bonds observed in these complexes, which even supersede the strengths of the Fe- and Ru-NO bonds in analogous (isoelectronic) Fe/Ru(II)-NO(+) complexes. Using time-dependent density functional theory (TD-DFT) calculations, we were able to assign the electronic spectra of 1 and 2, and to gain key insight into the mechanism of NO photorelease in these complexes. Upon irradiation in the UV region, NO is released because of the direct excitation of d(π)_π* → π*_d(π) charge transfer (CT) states (direct mechanism), which is similar to analogous NO adducts of Ru(III) and Fe(III) complexes. These are transitions from the Mn-NO bonding (d(π)_π*) into the Mn-NO antibonding (π*_d(π)) orbitals within the Mn-NO π backbond. Since these transitions lead to the population of Mn-NO antibonding orbitals, they promote the photorelease of NO. In the case of 1 and 2, further transitions with distinct d(π)_π* → π*_d(π) CT character are observed in the 450-500 nm spectral range, again promoting photorelease of NO. This is confirmed by resonance Raman spectroscopy, showing strong resonance enhancement of the Mn-NO stretch at 450-500 nm excitation. The extraordinary photolability of the Mn-nitrosyls upon irradiation in the vis-NIR region is due to the presence of low-lying d(xy) → π*_d(π) singlet and triplet excited states. These have zero oscillator strengths, but can be populated by initial excitation into d(xy) → L(Py/Q_π*) CT transitions between Mn and the coligand, followed by interconversion into the d(xy) → π*_d(π) singlet excited states. These show strong spin-orbit coupling with the analogous d(xy) → π*_d(π) triplet excited states, which promotes intersystem crossing. TD-DFT shows that the d(xy) → π*_d(π) triplet excited states are indeed found at very low energy. These states are strongly Mn-NO antibonding in nature, and hence, promote dissociation of the NO ligand (indirect mechanism). The Mn-nitrosyls therefore show the long sought-after potential for easy tunability of the NO photorelease properties by simple changes in the coligand.  相似文献   

11.
Yeh SW  Lin CW  Li YW  Hsu IJ  Chen CH  Jang LY  Lee JF  Liaw WF 《Inorganic chemistry》2012,51(7):4076-4087
The reversible redox transformations [(NO)(2)Fe(S(t)Bu)(2)](-) ? [Fe(μ-S(t)Bu)(NO)(2)](2)(2-) ? [Fe(μ-S(t)Bu)(NO)(2)](2)(-) ? [Fe(μ-S(t)Bu)(NO)(2)](2) and [cation][(NO)(2)Fe(SEt)(2)] ? [cation](2)[(NO)(2)Fe(SEt)(2)] (cation = K(+)-18-crown-6 ether) are demonstrated. The countercation of the {Fe(NO)(2)}(9) dinitrosyliron complexes (DNICs) functions to control the formation of the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) dianionic reduced Roussin's red ester (RRE) [PPN](2)[Fe(μ-SR)(NO)(2)](2) or the {Fe(NO)(2)}(10) dianionic reduced monomeric DNIC [K(+)-18-crown-6 ether](2)[(NO)(2)Fe(SR)(2)] upon reduction of the {Fe(NO)(2)}(9) DNICs [cation][(NO)(2)Fe(SR)(2)] (cation = PPN(+), K(+)-18-crown-6 ether; R = alkyl). The binding preference of ligands [OPh](-)/[SR](-) toward the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) motif of dianionic reduced RRE follows the ligand-displacement series [SR](-) > [OPh](-). Compared to the Fe K-edge preedge energy falling within the range of 7113.6-7113.8 eV for the dinuclear {Fe(NO)(2)}(9){Fe(NO)(2)}(9) DNICs and 7113.4-7113.8 eV for the mononuclear {Fe(NO)(2)}(9) DNICs, the {Fe(NO)(2)}(10) dianionic reduced monomeric DNICs and the {Fe(NO)(2)}(10){Fe(NO)(2)}(10) dianionic reduced RREs containing S/O/N-ligation modes display the characteristic preedge energy 7113.1-7113.3 eV, which may be adopted to probe the formation of the EPR-silent {Fe(NO)(2)}(10)-{Fe(NO)(2)}(10) dianionic reduced RREs and {Fe(NO)(2)}(10) dianionic reduced monomeric DNICs in biology. In addition to the characteristic Fe/S K-edge preedge energy, the IR ν(NO) spectra may also be adopted to characterize and discriminate [(NO)(2)Fe(μ-S(t)Bu)](2) [IR ν(NO) 1809 vw, 1778 s, 1753 s cm(-1) (KBr)], [Fe(μ-S(t)Bu)(NO)(2)](2)(-) [IR ν(NO) 1674 s, 1651 s cm(-1) (KBr)], [Fe(μ-S(t)Bu)(NO)(2)](2)(2-) [IR ν(NO) 1637 m, 1613 s, 1578 s, 1567 s cm(-1) (KBr)], and [K-18-crown-6 ether](2)[(NO)(2)Fe(SEt)(2)] [IR ν(NO) 1604 s, 1560 s cm(-1) (KBr)].  相似文献   

12.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter.  相似文献   

13.
An Fe(II) carbonyl complex [(PaPy3)Fe(CO)](ClO4) (1) of the pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy3H, H is the dissociable amide proton) has been synthesized and structurally characterized. This Fe(II) carbonyl exhibits its nu(CO) at 1972 cm(-1), and its 1H NMR spectrum in degassed CD3CN confirms its S = 0 ground state. The bound CO in 1 is not photolabile. Reaction of 1 with an equimolar amount of NO results in the formation of the {Fe-NO}7 nitrosyl [(PaPy3)Fe(NO)](ClO4) (2), while excess NO affords the iron(III) nitro complex [(PaPy3)Fe(NO2)](ClO4) (5). In the presence of [Fe(Cp)2]+ and excess NO, 1 forms the {Fe-NO}6 nitrosyl [(PaPy3)Fe(NO)](ClO4)2 (3). Complex 1 also reacts with dioxygen to afford the iron(III) mu-oxo species [{(PaPy3)Fe}2O](ClO4)2 (4). Comparison of the metric and spectral parameters of 1 with those of the previously reported {Fe-NO}6,7 nitrosyls 3 and 2 provides insight into the electronic distributions in the Fe(II)-CO, Fe(II)-NO, and Fe(II)-NO+ bonds in the isostructural series of complexes 1-3 derived from a non-heme polypyridine ligand with one carboxamide group.  相似文献   

14.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

15.
Dinitrosyl iron complex [(-SC(7)H(4)SN)(2)Fe(NO)(2)](-) (1) was prepared by reaction of [S(5)Fe(NO)(2)](-) and bis(2-benzothiozolyl) disulfide. In synthesis of the analogous dinitrosyl iron compounds (DNICs), the stronger electron-donating thiolates [RS](-) (R = C(6)H(4)-o-NHCOCH(3), C(4)H(3)S, C(6)H(4)NH(2), Ph), compared to [-SC(7)H(4)SN](-) of complex 1, trigger thiolate-ligand substitution to yield [(-SC(6)H(4)-o-NHCOCH(3))(2)Fe(NO)(2)](-) (2), [(-SC(4)H(3)S)(2)Fe(NO)(2)](-) (3), and [(SPh)(2)Fe(NO)(2)](-) (4), respectively. At 298 K, complexes 2 and 3 exhibit a well-resolved five-line EPR signal at g = 2.038 and 2.027, respectively, the characteristic g value of DNICs. The magnetic susceptibility fit indicates that the resonance hybrid of {Fe(+)((*)NO)(2)}(9) and {Fe(-)((+)NO)(2)}(9) in 2 is dynamic by temperature. The IR nu(NO) stretching frequencies (ranging from (1766, 1716) to (1737, 1693) cm(-)(1) (THF)) of complexes 1-4 signal the entire window of possible electronic configurations for such stable and isolable {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-). The NO-releasing ability of {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-) is finely tuned by the coordinated thiolate ligands. The less electron-donating thiolate ligands coordinated to {Fe(NO)(2)}(9) motif act as better NO-donor DNICs in the presence of NO-trapping agent [Fe(S,S-C(6)H(4))(2)](2)(2-). Interconversion between {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-) and {Fe(NO)(2)}(10) [(Ph(3)P)(2)Fe(NO)(2)] was verified in the reaction of (a) [(RS)(2)Fe(NO)(2)](-), 10 equiv of PPh(3) and sodium-biphenyl, and (b) 2 equiv of thiol, [RS](-), and [(Ph(3)P)(2)Fe(NO)(2)], respectively. The biomimetic reaction cycle, transformation between {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-) and {Fe(NO)(2)}(9) [(R'S)(2)Fe(NO)(2)](-), reversible interconversion of {Fe(NO)(2)}(9) and {Fe(NO)(2)}(10) DNICs, and degradation/reassembly of [2Fe-2S] clusters may decipher and predict the biological cycle of interconversion of {Fe(NO)(2)}(9) DNICs, {Fe(NO)(2)}(10) DNICs, and the [Fe-S] clusters in proteins.  相似文献   

16.
Four new binuclear Mn(III) complexes with carboxylate bridges have been synthesized: [[Mn(nn)(H(2)O)](2)(mu-ClCH(2)COO)(2)(mu-O)](ClO(4))(2) with nn = bpy (1) or phen (2) and [[Mn(bpy)(H(2)O)](2)(mu-RCOO)(2)(mu-O)](NO(3))(2) with RCOO = ClCH(2)COO (3) or CH(3)COO (4). The characterization by X-ray diffraction (1 and 3) and X-ray absorption spectroscopy (XAS) (1-4) displays the relevance of this spectroscopy to the elucidation of the structural environment of the manganese ions in this kind of compound. Magnetic susceptibility data show an antiferromagnetic coupling for all the compounds: J = -2.89 cm(-1) (for 1), -8.16 cm(-1) (for 2), -0.68 cm(-1) (for 3), and -2.34 cm(-1) (for 4). Compounds 1 and 3 have the same cation complex [[Mn(bpy)(H(2)O)](2)(mu-ClCH(2)COO)(2)(mu-O)](2+), but, while 1 shows an antiferromagnetic coupling, for 3 the magnetic interaction between Mn(III) ions is very weak. The four compounds show catalase activity, and when the reaction stopped, Mn(II) compounds with different nuclearity could be obtained: binuclear [[Mn(phen)(2)](mu-ClCH(2)COO)(2)](ClO(4))(2), trinuclear [Mn(3)(bpy)(2)(mu-ClCH(2)COO)(6)], or mononuclear complexes without carboxylate. Two Mn(II) compounds without carboxylate have been characterized by X-ray diffraction: [Mn(NO(3))(2)(bpy)(2)][Mn(NO(3))(bpy)(2)(H(2)O)]NO(3) (5) and [Mn(bpy)(3)](ClO(4))(2).0.5 C(6)H(4)-1,2-(COOEt)(2).0.5H(2)O (8).  相似文献   

17.
Mechanistic insight on the reversible binding of NO to Fe(II) chelate complexes as potential catalysts for the removal of NO from effluent gas streams has been obtained from the temperature and pressure parameters for the "on" and "off" reactions determined using a combination of flash photolysis and stopped-flow techniques. These parameters are correlated with those for water exchange reactions on the corresponding Fe(II) and Fe(III) chelate complexes, from which mechanistic conclusions are drawn. Small and positive Delta V(++) values are found for NO binding to and release from all the selected complexes, consistent with a dissociative interchange (I(d)) mechanism. The only exception in the series of studied complexes is the binding of NO to [Fe(II)(nta)(H(2)O)(2)](-). The negative volume of activation observed for this reaction supports the operation of an I(a) ligand substitution mechanism. The apparent mechanistic differences can be accounted for in terms of the electronic and structural features of the studied complexes. The results indicate that the aminocarboxylate chelates affect the rate and overall equilibrium constants, as well as the nature of the substitution mechanism by which NO coordinates to the selected complexes. There is, however, no simple correlation between the rate and activation parameters and the selected donor groups or overall charge on the iron(II) complexes.  相似文献   

18.
A polyurethane-coated sol-gel material containing the photoactive Mn nitrosyl [Mn(PaPy3)(NO)]ClO4 rapidly releases NO with high quantum efficiency when exposed to visible light of low intensity. This rigid and strongly colored hybrid material is a convenient point source of NO that can only be triggered with light. Successful delivery of NO to biological targets, such as proteins, by this material has also been demonstrated.  相似文献   

19.
The iron(III) complexes [Fe(2)(HPTB)(mu-OH)(NO(3))(2)](NO(3))(2).CH(3)OH.2H(2)O (1), [Fe(2)(HPTB)(mu-OCH(3))(NO(3))(2)](NO(3))(2).4.5CH(3)OH (2), [Fe(2)(HPTB)(mu-OH)(OBz)(2)](ClO(4))(2).4.5H(2)O (3), [Fe(2)(N-EtOH-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3CH(3)OH.1.5H(2)O (4), [Fe(2)(5,6-Me(2)-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3.5CH(3)OH.C(2)H(5)OC(2)H(5).0.5H(2)O (5), and [Fe(4)(HPTB)(2)(mu-F)(2)(OH)(4)](ClO(4))(4).CH(3)CN.C(2)H(5)OC(2)H(5).H(2)O (6) were synthesized (HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, N-EtOH-HPTB = N,N,N',N'-tetrakis(N' '-(2-hydroxoethyl)-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, 5,6-Me(2)-HPTB = N,N,N',N'-tetrakis(5,6-dimethyl-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane). The molecular structures of 2-6 were established by single-crystal X-ray crystallography. Iron(II) complexes with ligands similar to the dinucleating ligands described herein have been used previously as model compounds for the dioxygen uptake at the active sites of non-heme iron enzymes. The same metastable (mu-peroxo)diiron(III) adducts were observed during these studies. They can be prepared by adding hydrogen peroxide to the iron(III) compounds 1-6. Using stopped-flow techniques these reactions were kinetically investigated in different solvents and a mechanism was postulated.  相似文献   

20.
As part of our search for photoactive ruthenium nitrosyls, a set of {RuNO}6 nitrosyls has been synthesized and structurally characterized. In this set, the first nitrosyl [(SBPy3)Ru(NO)](BF4)3 (1) is derived from a polypyridine Schiff base ligand SBPy3, while the remaining three nitrosyls are derived from analogous polypyridine ligands containing either one ([(PaPy3)Ru(NO)](BF4)2 (2)) or two ([(Py3P)Ru(NO)]BF4 (3) and [(Py3P)Ru(NO)(Cl)] (4)) carboxamide group(s). The coordination structures of 1 and 2 are very similar except that in 2, a carboxamido nitrogen is coordinated to the ruthenium center in place of an imine nitrogen in case of 1. In 3 and 4, the ruthenium center is coordinated to two carboxamido nitrogens in the equatorial plane and the bound NO is trans to a pyridine nitrogen (in 3) and chloride (in 4), respectively. Complexes 1-3 contain N6 donor set, and the NO stretching frequencies (nuNO) correlate well with the N-O bond distances. All four diamagnetic {RuNO}(6) nitrosyls are photoactive and release NO rapidly upon illumination with low-intensity (5-10 mW) UV light. Interestingly, photolysis of 1 generates the diamagnetic Ru(II) photoproduct [(SBPy3)Ru(MeCN)](2+) while 2-4 afford paramagnetic Ru(III) species in MeCN solution. The quantum yield values of NO release under UV illumination (lambda(max) = 302 nm) lie in the range 0.06-0.17. Complexes 3 and 4 also exhibit considerable photoactivity under visible light. The efficiency of NO release increases in the order 2 < 3 < 4, indicating that photorelease of NO is facilitated by (a) the increase in the number of coordinated carboxamido nitrogen(s) and (b) the presence of negatively charged ligands (like chloride) trans to the bound NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号