首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2021,32(8):2479-2483
DNA methyl transferase(DNMT) and histone deacetylase(HDAC) are well recognized epigenetic targets for discovery of antitumor agents.In this study,we designed and synthesized a series of nucleoside base hydroxamic acid derivatives as DNMT and HDAC dual inhibitors.MTT assays and enzymatic inhibitory activity tests indicated that compound 204 exhibited potent DNMT1 and HDAC1/6 inhibitory potency simultaneously in enzymatic levels and at cellular levels,inducing hypomethylation of p16 and hyperacetylation of histones H3 K9 and H4 K8.Besides,204 remarkably inhibited proliferation against cancer cells U937 by prompting G0/G1 cell cycle arrest.Molecular docking models explained the functional mechanism of 204 inhibiting DNMT1 and HDAC.Preliminary studies on metabolic profiles revealed that 204 showed desirable stability in liver microsomes.Our study suggested that 204 inhibiting DNMT and HDAC concurrently can be a potential lead compound for epigenetic cancer therapy.  相似文献   

2.
During DNA replication, ubiquitin-like, containing PHD and RING fingers domains 1 (UHRF1) plays key roles in the inheritance of methylation patterns to daughter strands by recognizing through its SET and RING-associated domain (SRA) the methylated CpGs and recruiting DNA methyltransferase 1 (DNMT1). Herein, our goal is to identify UHRF1 inhibitors targeting the 5′-methylcytosine (5mC) binding pocket of the SRA domain to prevent the recognition and flipping of 5mC and determine the molecular and cellular consequences of this inhibition. For this, we used a multidisciplinary strategy combining virtual screening and molecular modeling with biophysical assays in solution and cells. We identified an anthraquinone compound able to bind to the 5mC binding pocket and inhibit the base-flipping process in the low micromolar range. We also showed in cells that this hit impaired the UHRF1/DNMT1 interaction and decreased the overall methylation of DNA, highlighting the critical role of base flipping for DNMT1 recruitment and providing the first proof of concept of the druggability of the 5mC binding pocket. The selected anthraquinone appears thus as a key tool to investigate the role of UHRF1 in the inheritance of methylation patterns, as well as a starting point for hit-to-lead optimizations.  相似文献   

3.
Herein we reported an efficient dual DNMT and HDAC inhibitor 208 with great antiproliferative activity against U937 cells. Further studies revealed 208 affected the whole proteome profile and could induce G1 cell cycle arrest and apoptosis in U937 cells through upregulating CDK inhibitor p16 and downregulating cyclin-dependent kinases and their activators.  相似文献   

4.
Inhibitors of epigenetic writers such as DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug and probe discovery. To advance epigenetic probes and drug discovery, chemical companies are developing focused libraries for epigenetic targets. Based on a knowledge-based approach, herein we report the identification of two quinazoline-based derivatives identified in focused libraries with sub-micromolar inhibition of DNMT1 (30 and 81 nM), more potent than S-adenosylhomocysteine. Also, both compounds had a low micromolar affinity of DNMT3A and did not inhibit DNMT3B. The enzymatic inhibitory activity of DNMT1 and DNMT3A was rationalized with molecular modeling. The quinazolines reported in this work are known to have low cell toxicity and be potent inhibitors of the epigenetic target G9a. Therefore, the quinazoline-based compounds presented are attractive not only as novel potent inhibitors of DNMTs but also as dual and selective epigenetic agents targeting two families of epigenetic writers.  相似文献   

5.
DNA methyltransferases (DNMTs) including DNMT1 are a conserved family of cytosine methylases that play crucial roles in epigenetic regulation. The versatile functions of DNMT1 rely on allosteric networks between its different interacting partners, emerging as novel therapeutic targets. In this work, based on the modeling structures of DNMT1-ubiquitylated H3 (H3Ub)/ubiquitin specific peptidase 7 (USP7) complexes, we have used a combination of elastic network models, molecular dynamics simulations, structural residue perturbation, network modeling, and pocket pathway analysis to examine their molecular mechanisms of allosteric regulation. The comparative intrinsic and conformational dynamics analysis of three DNMT1 systems has highlighted the pivotal role of the RFTS domain as the dynamics hub in both intra- and inter-molecular interactions. The site perturbation and network modeling approaches have revealed the different and more complex allosteric interaction landscape in both DNMT1 complexes, involving the events caused by mutational hotspots and post-translation modification sites through protein-protein interactions (PPIs). Furthermore, communication pathway analysis and pocket detection have provided new mechanistic insights into molecular mechanisms underlying quaternary structures of DNMT1 complexes, suggesting potential targeting pockets for PPI-based allosteric drug design.  相似文献   

6.
The aim of the present study was to evaluate the potential protective effect of glutathione (GSH) on Escherichia coli cells grown in a high concentration of thymoquinone (TQ). This quinone, as the main active compound of Nigella sativa seed oil, exhibits a wide range of biological activities. At low concentrations, it acts as an antioxidant, and at high concentrations, an antimicrobial agent. Therefore, any interactions between thymoquinone and glutathione are crucial for cellular defense against oxidative stress. In this study, we found that GSH can conjugate with thymoquinone and its derivatives in vitro, and only fivefold excess of GSH was sufficient to completely deplete TQ and its derivatives. We also carried out studies on cultures of GSH-deficient Escherichia coli strains grown on a minimal medium in the presence of different concentrations of TQ. The strains harboring mutations in gene ΔgshA and ΔgshB were about two- and fourfold more sensitive (256 and 128 µg/mL, respectively) than the wild type. It was also revealed that TQ concentration has an influence on reactive oxygen species (ROS) production in E. coli strains—at the same thymoquinone concentration, the level of ROS was higher in GSH-deficient E. coli strains than in wild type.  相似文献   

7.
8.
A novel series of amides based TMP moiety was designed, synthesized and evaluated for their antiproliferative as well as enzyme inhibition activity. Compounds 6a and 6b showed remarkable cytotoxic activity against HepG2 cells with IC50 values 0.65 and 0.92 μM, respectively compared with SAHA and CA-4 as reference compounds. In addition, compound 6a demonstrated good HDAC-tubulin dual inhibition activity as it showed better HDAC activity as well as anti-tubulin activity. Moreover, compound 6a exhibited G2/M phase arrest and pre-G1 apoptosis as demonstrated by cell cycle analysis and Annexin V assays. Further apoptosis studies demonstrated that compound 6a boosted the level of caspase 3/7. Caspase 3/7 activation and apoptosis induction were evidenced by decrease in mitochondrial permeability suggesting that activation of caspase 3/7 may occur via mitochondrial apoptotic pathway.  相似文献   

9.
Organotin(IV) compounds are a class of non-platinum metallo-conjugates exhibiting antitumor activity. The effects of different organotin types has been related to several mechanisms, including their ability to modify acetylation protein status and to promote apoptosis. Here, we focus on triorganotin(IV) complexes of butyric acid, a well-known HDAC inhibitor with antitumor properties. The conjugated compounds were synthesized and characterised by FTIR spectroscopy, multi-nuclear (1H, 13C and 119Sn) NMR, and mass spectrometry (ESI-MS). In the triorganotin(IV) complexes, an anionic monodentate butyrate ligand was observed, which coordinated the tin atom on a tetra-coordinated, monomeric environment similar to ester. FTIR and NMR findings confirm this structure both in solid state and solution. The antitumor efficacy of the triorganotin(IV) butyrates was tested in colon cancer cells and, among them, tributyltin(IV) butyrate (BT2) was selected as the most efficacious. BT2 induced G2/M cell cycle arrest, ER stress, and apoptotic cell death. These effects were obtained using low concentrations of BT2 up to 1 μM, whereas butyric acid alone was completely inefficacious, and the parent compound TBT was poorly effective at the same treatment conditions. To assess whether butyrate in the coordinated form maintains its epigenetic effects, histone acetylation was evaluated and a dramatic decrease in acetyl-H3 and -H4 histones was found. In contrast, butyrate alone stimulated histone acetylation at a higher concentration (5 mM). BT2 was also capable of preventing histone acetylation induced by SAHA, another potent HDAC inhibitor, thus suggesting that it may activate HDACs. These results support a potential use of BT2, a novel epigenetic modulator, in colon cancer treatment.  相似文献   

10.
Thymoquinone (TQ) is the main biologically active constituent of Nigella sativa. Many studies have confirmed its anticancer actions. Herein, we investigated the different anticancer activities of, and considered resistance mechanisms to, TQ. MTT and clonogenic data showed TQ’s ability to suppress breast MDA-MB-468 and T-47D proliferation at lower concentrations compared to other cancer and non-transformed cell lines tested (GI50 values ≤ 1.5 µM). Flow-cytometric analyses revealed that TQ consistently induced MDA-MB-468 and T-47D cell-cycle perturbation, specifically inducing pre-G1 populations. In comparison, less sensitive breast MCF-7 and colon HCT-116 cells exhibited only transient increases in pre-G1 events. Annexin V/PI staining confirmed apoptosis induction in MDA-MB-468 and HCT-116 cells, which was continuous in the former and transient in the latter. Experiments revealed the role of reactive oxygen species (ROS) generation and aneuploidy induction in MDA-MB-468 cells within the first 24 h of treatment. The ROS-scavenger NAD(P)H dehydrogenase (quinone 1) (NQO1; DT-diaphorase) and glutathione (GSH) were implicated in resistance to TQ. Indeed, western blot analyses showed that NQO1 is expressed in all cell lines in this study, except those most sensitive to TQ-MDA-MB-468 and T-47D. Moreover, TQ treatment increased NQO1 expression in HCT-116 in a concentration-dependent fashion. Measurement of GSH activity in MDA-MB-468 and HCT-116 cells found that GSH is similarly active in both cell lines. Furthermore, GSH depletion rendered these cells more sensitive to TQ’s antiproliferative actions. Therefore, to bypass putative inactivation of the TQ semiquinone metabolite, the benzylamine analogue was designed and synthesised following modification of TQ’s carbon-3 atom. However, the structural modification negatively impacted potency against MDA-MB-468 cells. In conclusion, we disclose the following: (i) The anticancer activity of TQ may be a consequence of ROS generation and aneuploidy; (ii) Early GSH depletion could substantially enhance TQ’s anticancer activity; (iii) Benzylamine substitution at TQ’s carbon-3 failed to enhance anticancer activity.  相似文献   

11.
Epigenetic alterations found in all human cancers are promising targets for anticancer therapy. In this sense, histone deacetylase inhibitors (HDACIs) are interesting anticancer agents that play an important role in the epigenetic regulation of cancer cells. Here, we report 15 novel hydroxamic acid-based histone deacetylase inhibitors with quinazolinone core structures. Five compounds exhibited antiproliferative activity with IC50 values of 3.4–37.8 µM. Compound 8 with a 2-mercaptoquinazolinone cap moiety displayed the highest antiproliferative efficacy against MCF-7 cells. For the HDAC6 target selectivity study, compound 8 displayed an IC50 value of 2.3 µM, which is 29.3 times higher than those of HDAC3, HDAC4, HDAC8, and HDAC11. Western blot assay proved that compound 8 strongly inhibited tubulin acetylation, a substrate of HDAC6. Compound 8 also displayed stronger inhibition activity against HDAC11 than the control drug Belinostat. The inhibitory mechanism of action of compound 8 on HDAC enzymes was then explored using molecular docking study. The data revealed a high binding affinity (−7.92 kcal/mol) of compound 8 toward HDAC6. In addition, dock pose analysis also proved that compound 8 might serve as a potent inhibitor of HDAC11.  相似文献   

12.
《Arabian Journal of Chemistry》2020,13(11):8226-8238
Essential oil is the natural extract rich in terpenoids, showing various physiological activities. Our previous studies have proved that essential oil of Pinus koraiensis pinecones (PEO) can inhibit the proliferation of MGC-803 cells and promote cell apoptosis in vitro via the HIPPO/YAP signaling pathway. In this study, we prepared the PEO nanoemulsion and studied its physicochemical properties and anti-tumor activity in MGC-803 tumor-bearing nude mice. The PEO nanoemulsion showed good stability, with an average particle size of 46.87 nm, a zeta potential of 34.4 mV, and a polydispersity index (PDI) of 0.121. The results of anti-tumor experiments showed that the PEO nanoemulsion can effectively inhibit the growth of tumor and promote the apoptosis. In addition, immunohistochemical results showed that the PEO nanoemulsion could inhibit the proliferation of MGC-803 cells by down-regulating the expression of YAP1/TEAD and its target proteins CTGF, AREG and GLI2 to regulate the HIPPO/YAP signaling pathway and its downstream signaling pathway. This study could provide the theoretical basis for the application of essential oils.  相似文献   

13.

Background  

Histone deacetylase (HDAC) proteins are associated with cell proliferation, differentiation, apoptosis, and cancer. Specifically, HDAC1 is linked with cell growth, a hallmark of cancer formation. HDAC1 is a phosphoprotein and phosphorylation at S421 and S423 promotes HDAC1 enzymatic activity and protein association. While single and double point mutants of HDAC1 at S421 and S423 appear functionally similar, the evidence suggests that HDAC1 is phosphorylated simultaneously at both S421 and S423 in vivo. Additional experiments are necessary to probe the role of double phosphorylation of HDAC1 at S421 and S423.  相似文献   

14.
DNA methyltransferase 1 (DNMT1) is an emerging epigenetic target for the treatment of cancer and other diseases. To date, several inhibitors from different structural classes have been published. In this work, we report a comprehensive molecular modeling study of 14 established DNTM1 inhibitors with a herein developed homology model of the catalytic domain of human DNTM1. The geometry of the homology model was in agreement with the proposed mechanism of DNA methylation. Docking results revealed that all inhibitors studied in this work have hydrogen bond interactions with a glutamic acid and arginine residues that play a central role in the mechanism of cytosine DNA methylation. The binding models of compounds such as curcumin and parthenolide suggest that these natural products are covalent blockers of the catalytic site. A pharmacophore model was also developed for all DNMT1 inhibitors considered in this work using the most favorable binding conformations and energetic terms of the docked poses. To the best of our knowledge, this is the first pharmacophore model proposed for compounds with inhibitory activity of DNMT1. The results presented in this work represent a conceptual advance for understanding the protein–ligand interactions and mechanism of action of DNMT1 inhibitors. The insights obtained in this work can be used for the structure-based design and virtual screening for novel inhibitors targeting DNMT1.  相似文献   

15.
Novel histone deacetylase(HDAC) inhibitors 9a–l were designed and synthesized by coupling the carboxyl group of salicylic acid(SA) with N-hydroxycinnamamides through various alkylol amines, and their in vitro biological activities were evaluated. The N-hydroxycinnamamide/SA hybrids 9b–f and 9h showed good to moderate anti-tumor activities. Notably, compound 9e had a greater potency, comparable to vorinostat(SAHA), in human colon carcinoma cells, which was probably, or at least partially, attributable to the positive effects of the chain length noted in alkylol amines. Furthermore, the HDAC inhibitory activities of 9e against Hela cell nuclear were also similar to that of vorinostat(SAHA), while the tested compounds 9c–f did not exhibit any isoform selectivity in the inhibition of HDACs. In addition, compound 9e could selectively inhibit tumor cells, but not inhibit non-tumor cell proliferation in vitro. Our findings suggest that the N-hydroxycinnamamide/SA hybrids may hold significant promise as therapeutic agents for the intervention of human cancers.  相似文献   

16.
Abnormal cell proliferation and accumulation of fluid-filled cysts along the nephrons in polycystic kidney disease (PKD) could lead to a decline in renal function and eventual end-stage renal disease (ESRD). Gambogic acid (GA), a xanthone compound extracted from the brownish resin of the Garcinia hanburyi tree, exhibits various pharmacological properties, including anti-inflammation, antioxidant, anti-proliferation, and anti-cancer activity. However, its effect on inhibiting cell proliferation in PKD is still unknown. This study aimed to determine the pharmacological effects and detailed mechanisms of GA in slowing an in vitro cyst growth model of PKD. The results showed that GA (0.25–2.5 μM) significantly retarded MDCK cyst growth and cyst formation in a dose-dependent manner, without cytotoxicity. Using the BrdU cell proliferation assay, it was found that GA (0.5–2.5 μM) suppressed MDCK and Pkd1 mutant cell proliferation. In addition, GA (0.5–2.5 μM) strongly inhibited phosphorylation of ERK1/2 and S6K expression and upregulated the activation of phosphorylation of AMPK, both in MDCK cells and Pkd1 mutant cells. Taken together, these findings suggested that GA could retard MDCK cyst enlargement, at least in part by inhibiting the cell proliferation pathway. GA could be a natural plant-based drug candidate for ADPKD intervention.  相似文献   

17.
This study aimed to investigate the inhibitory effects and mechanism of diaporthein B (DTB), a natural compound extracted from the fungus Penicillium sclerotiorum GZU-XW03-2, on human colon cancer cells. The inhibitory effect of DTB at different concentrations on the proliferation of colon cancer cells HCT116 and LOVO was detected at 24 and 48 h. The effect of cell migration and clone formation ability were detected by cell scratch and plate cloning experiments. Morphological changes were observed by Hoechst 33342 and Annexin-V/PI staining, and flow cytometry was used to detect the proportion of apoptotic cells. DTB significantly inhibited colon cancer cell proliferation, migration, and apoptosis in a dose-dependent manner without significant effects on normal colonic epithelial cells NCM460. The IC50 inhibition effect can be achieved after treatment with 3 μmol/L DTB for 24 h. Compared with the blank group, the migration and clonal-forming ability of colon cancer cells in the DTB group was significantly decreased (p < 0.01), while the apoptotic cells were significantly increased (p < 0.01) in a concentration-dependent manner. DTB can inhibit the proliferation and migration of human colon cancer cells HCT116 and LOVO and promote the apoptosis of human colon cancer cells.  相似文献   

18.
This study aimed to evaluate the antimicrobial effect of Thymoquinone (TQ) on four different oral microorganisms. Minimum Bactericidal Concentration (MBC), Minimum Inhibition Concentration (MIC), Broth microdilution, and Well diffusion tests were used to determine the optimum antimicrobial concentrations of TQ against Streptococcus salivarius, Streptococcus oralis, Streptococcus mutans, and Staphylococcus aureus over 1, 3, 6, 12 and 24 h. Chlorhexidine 0.12% was selected as a positive control. The inhibitory effect of TQ on bacterial growth was most noticeable with S. salivarius, while the least affected was S. aureus. TQ’s MBC and MIC for S. oralis and S. aureus were comparable 2 mg/mL and 3 mg/mL, respectively. S. salivarius was most resistant to TQ and displayed a value of 5 mg/mL and 4 mg/mL for MIC and MBC, respectively. The viable count of different strains after exposure to TQ’s MBC values was most noticeable with S. aureus followed by S. oralis and S. mutans, while S. salivarius was least affected. This study emphasized the promising antimicrobial effect of TQ against the four main oral microorganisms. It has a potential preventive effect against dental caries as well as other oral diseases.  相似文献   

19.
Bioflavonoids are plant compounds touted for their potential to treat or prevent several diseases including cancer caused by various stress conditions. Galangin (4H-1-Benzopyran-4-one, 3, 5, 7-trihydroxy-2-phenyl-), a flavonoid, is a polyphenolic compound found primarily in medicinal herb, Alpinia galanga. This study aims to demonstrate the galangin as a pharmacological lead compound using in vitro, in vivo, and in silico model targeting specific cancer condition and proteins. The proliferation of MCF-7 and Ehrlich ascites carcinoma (EAC) cells was significantly inhibited with an IC50 of 34.11 and 22.29???g/ml, respectively. In an animal model system, galangin has inhibited the tumor growth by 73.51%?±?4.742 in EAC-induced Swiss Albino mice with no evidences of mortality as compared to standard drug, 5-fluorouracil. The effectiveness of galangin is proven in an animal system suggesting its pharmacokinetics behavior in an animal model which is also complemented by outcome of in silico analysis with more than 88?% of human intestinal absorption and significant Caco-2 cell, MDCK cell, and skin permeability as predicted by in silico methods. Galangin was docked against 19 different proteins involved in tumorogenesis and apoptosis; the energetic analysis indicates that it exhibits higher predicted binding free energy of ?12.7?kcal/mol with Bcl-xL protein.  相似文献   

20.
Gastric cancer is considered to be one of the most common causes of cancer death worldwide due to its high recurrence and metastasis rates. The molecule 23,24-Dihydrocucurbitacin E (DHCE) is a cucurbitacin-derived tetracyclic triterpenoid compound that has anti-tumor activity, but the exact mechanism remains to be elucidated. This research aimed to explore the effects of DHCE on human gastric cancer cells and the possible mechanisms. The results showed that DHCE suppressed proliferation, migration, and invasion of gastric cancer cells, as well as induced apoptosis and G2/M phase arrest. Mechanistically, the potential targets and pathways of DHCE were predicted using database screening and verified using a molecular docking study, fluorescence staining, and Western blot. The results indicated that DHCE obviously inhibited the kinase activity of ERK2 via targeting its ATP-binding domain, destroyed F-actin microfilament, and reduced the expression levels of Ras, p-c-Raf, ERK, p-ERK, and MMP9 proteins. Collectively, our study demonstrated that DHCE suppressed gastric cancer cells’ proliferation, migration, and invasion through targeting ERK2 and disrupting the Ras/Raf/ERK/MMP9 signaling pathway. These properties make DHCE a promising candidate drug for the further design and development of novel and effective Ras/Raf/ERK/MMP9 pathway inhibitors for treating gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号