首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, polyacrylonitrile/aminated polymeric nanosphere (PAN/APN) nanofibers were prepared by electrospinning of monodispersed aminated polymeric nanospheres (APNs) for removal of Cr(VI) from aqueous solution. Characterization results showed that obtained PAN/APNs possessed nitrogen functionalization. Furthermore, the adsorption application results indicated that PAN/APN nanofibers exhibited a high adsorption capacity of 556 mg/g at 298 K for Cr(VI) removal. The kinetic data showed that the adsorption process fits the pseudo-second order. A thermodynamic study revealed that the adsorption of Cr(VI) was spontaneous and endothermic. The coexisting ions Na+, Ca2+, K+, Cl, NO3 and PO43− had little influence on Cr(VI) adsorption, while SO42− in solution dramatically decreased the removal performance. In the investigation of the removal mechanism, relative results indicated that the adsorption behavior possibly involved electrostatic adsorption, redox reaction and chelation. PAN/APN nanofibers can detoxify Cr(VI) to Cr(III) and subsequently chelate Cr(III) on its surface. The unique structure and nitrogen functionalization of PAN/APN nanofibers make them novel and prospective candidates in heavy metal removal.  相似文献   

2.
The dense structure of polymeric matrices exposes only 10–20% of adsorption (amidoxime) groups, thus detracting from the extraction efficiency of uranium from seawater. Herein, the amidoxime-modified building units were cross-linked via the Scholl reaction into porous aromatic frameworks (PAFs). Due to the formation of open architecture, PAF adsorbents reveal a larger utilization ratio (>60%) of amidoxime groups. Consequently, PAF samples enable an ultrahigh uranium capacity of 702 mg g−1, which creates a 16-fold capacity enhancement and gains a 7-fold adsorption rate improvement compared with polymer-based adsorbents. Notably, PAF solids are able to be integrated into various devices, thus realizing versatile and efficacious uranium extraction from real seawater (meeting the commercial standard ∼6 mg g−1 in 21 days). In addition, the final cost using our PAF-based adsorbent is US $189.77 per kg uranium, it is in accordance with the prevailing market cost ($100–335 per kg).

The dense structure of polymeric matrices exposes only 10–20% of adsorption (amidoxime) groups, thus detracting from the extraction efficiency of uranium from seawater.  相似文献   

3.
Adsorption is one of the most successful physicochemical approaches for removing heavy metal contaminants from polluted water. The use of residual biomass for the production of adsorbents has attracted a lot of attention due to its cheap price and environmentally friendly approach. The transformation of Sargassum—an invasive brown macroalga—into activated carbon (AC) via phosphoric acid thermochemical activation was explored in an effort to increase the value of Sargassum seaweed biomass. Several techniques (nitrogen adsorption, pHPZC, Boehm titration, FTIR and XPS) were used to characterize the physicochemical properties of the activated carbons. The SAC600 3/1 was predominantly microporous and mesoporous (39.6% and 60.4%, respectively) and revealed a high specific surface area (1695 m2·g−1). To serve as a comparison element, a commercial reference activated carbon with a large specific surface area (1900 m2·g−1) was also investigated. The influence of several parameters on the adsorption capacity of AC was studied: solution pH, solution temperature, contact time and Cr(VI) concentration. The best adsorption capacities were found at very acid (pH 2) solution pH and at lower temperatures. The adsorption kinetics of SAC600 3/1 fitted well a pseudo-second-order type 1 model and the adsorption isotherm was better described by a Jovanovic-Freundlich isotherm model. Molecular dynamics (MD) simulations confirmed the experimental results and determined that hydroxyl and carboxylate groups are the most influential functional groups in the adsorption process of chromium anions. MD simulations also showed that the addition of MgCl2 to the activated carbon surface before adsorption experiments, slightly increases the adsorption of HCrO4 and CrO42− anions. Finally, this theoretical study was experimentally validated obtaining an increase of 5.6% in chromium uptake.  相似文献   

4.
A new liquid—liquid extraction system for molybdenum(VI) was studied. It contains 4-nitrocatechol (4NC) as a complexing chromogenic reagent and benzalkonium chloride (BZC) as a source of heavy cations (BZ+), which are prone to form chloroform-extractable ion-association complexes. The optimum conditions for the determination of trace molybdenum(VI) were found: concentrations of 4NC and BZC (7.5 × 10−4 mol dm−3 and 1.9 × 10−4 mol dm−3, respectively), acidity (3.75 × 10−2 mol dm−3 H2SO4), extraction time (3 min), and wavelength (439 nm). The molar absorptivity, limit of detection, and linear working range were 5.5 × 104 dm3 mol−1 cm−1, 5.6 ng cm−3, and 18.6–3100 μg cm−3, respectively. The effect of foreign ions was examined, and the developed procedure was applied to the analysis of synthetic mixtures and real samples (potable waters and steels). The composition of the extracted complex was 1:1:2 (Mo:4NC:BZ). Three possible structures of its anionic part [MoVI(4NC)O2(OH)2]2− were discussed based on optimizations at the B3LYP/3-21G level of theory, and simulated UV/Vis absorption spectra were obtained with the TD Hamiltonian.  相似文献   

5.
The extensive use of sulfonamides seriously threatens the safety and stability of the ecological environment. Developing green inexpensive and effective adsorbents is critically needed for the elimination of sulfonamides from wastewater. The non-modified biochar exhibited limited adsorption capacity for sulfonamides. In this study, the attapulgite-doped biochar adsorbent (ATP/BC) was produced from attapulgite and rice straw by calcination. Compared with non-modified biochar, the specific surface area of ATP/BC increased by 73.53–131.26%, and the average pore width of ATP/BC decreased 1.77–3.60 nm. The removal rates of sulfadiazine and sulfamethazine by ATP/BC were 98.63% and 98.24%, respectively, at the mass ratio of ATP to rice straw = 1:10, time = 4 h, dosage = 2 g∙L−1, pH = 5, initial concentration = 1 mg∙L−1, and temperature = 20 °C. A pseudo-second-order kinetic model (R2 = 0.99) and the Freundlich isothermal model (R2 = 0.99) well described the process of sulfonamide adsorption on ATP/BC. Thermodynamic calculations showed that the adsorption behavior of sulfonamides on the ATP/BC was an endothermic (ΔH > 0), random (ΔS > 0), spontaneous reaction (ΔG < 0) that was dominated by chemisorption (−20 kJ∙mol−1 > ΔG). The potential adsorption mechanisms include electrostatic interaction, hydrogen bonding, π–π interaction, and Lewis acid–base interactions. This study provides an optional material to treat sulfonamides in wastewater and groundwater.  相似文献   

6.
Microporous- and mesoporous-activated carbons were produced from longan seed biomass through physical activation with CO2 under the same activation conditions of time and temperature. The specially prepared mesoporous carbon showed the maximum porous properties with the specific surface area of 1773 m2/g and mesopore volume of 0.474 cm3/g which accounts for 44.1% of the total pore volume. These activated carbons were utilized as porous adsorbents for the removal of methylene blue (MB) from an aqueous solution and their effectiveness was evaluated for both the adsorption kinetics and capacity. The adsorption kinetic data of MB were analyzed by the pseudo-first-order model, the pseudo-second-order model, and the pore-diffusion model equations. It was found that the adsorption kinetic behavior for all carbons tested was best described by the pseudo-second-order model. The effective pore diffusivity (De) derived from the pore-diffusion model had the values of 4.657 × 10−7–6.014 × 10−7 cm2/s and 4.668 × 10−7–19.920 × 10−7 cm2/s for the microporous- and mesoporous-activated carbons, respectively. Three well-known adsorption models, namely the Langmuir, Freundlich and Redlich–Peterson equations were tested with the experimental MB adsorption isotherms, and the results showed that the Redlich–Peterson model provided the overall best fitting of the isotherm data. In addition, the maximum capacity for MB adsorption of 1000 mg/g was achieved with the mesoporous carbon having the largest surface area and pore volume. The initial pH of MB solution had virtually no effect on the adsorption capacity and removal efficiency of the methylene blue dye. Increasing temperature over the range from 35 to 55 °C increased the adsorption of methylene blue, presumably caused by the increase in the diffusion rate of methylene blue to the adsorption sites that could promote the interaction frequency between the adsorbent surface and the adsorbate molecules. Overall, the high surface area mesoporous carbon was superior to the microporous carbon in view of the adsorption kinetics and capacity, when both carbons were used for the removal of MB from an aqueous solution.  相似文献   

7.
The strong radioactivity of iodine compounds derived from nuclear power plant wastes has motivated the development of highly efficient adsorbents. Porous aromatic frameworks (PAFs) have attracted much attention due to their low density and diverse structure. In this work, an azo group containing PAF solid, denoted as LNU-58, was prepared through Suzuki polymerization of tris-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)-amine and 3,5-dibromoazobenzene building monomers. Based on the specific polarity properities of the azo groups, the electron-rich aromatic fragments in the hierarchical architecture efficiently capture iodine molecules with an adsorption capacity of 3533.11 mg g−1 (353 wt%) for gaseous iodine and 903.6 mg g−1 (90 wt%) for dissolved iodine. The iodine uptake per specific surface area up to 8.55 wt% m−2 g−1 achieves the highest level among all porous adsorbents. This work illustrates the successful preparation of a new type of porous adsorbent that is expected to be applied in the field of practical iodine adsorption.  相似文献   

8.
Developing a low-cost and effective proton-conductive electrolyte to meet the requirements of the large-scale manufacturing of proton exchange membrane (PEM) fuel cells is of great significance in progressing towards the upcoming “hydrogen economy” society. Herein, utilizing the one-pot acylation polymeric combination of acyl chloride and amine precursors, a polyamide with in-built -SO3H moieties (PA-PhSO3H) was facilely synthesized. Characterization shows that it possesses a porous feature and a high stability at the practical operating conditions of PEM fuel cells. Investigations of electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA-PhSO3H displays a proton conductivity of up to 8.85 × 10−2 S·cm−1 at 353 K under 98% relative humidity (RH), which is more than two orders of magnitude higher than that of its -SO3H-free analogue, PA-Ph (6.30 × 10−4 S·cm−1), under the same conditions. Therefore, matrix-mixed membranes were fabricated by mixing with polyacrylonitrile (PAN) in different ratios, and the EIS analyses revealed that its proton conductivity can reach up to 4.90 × 10−2 S·cm−1 at 353 K and a 98% relative humidity (RH) when the weight ratio of PA-PhSO3H:PAN is 3:1 (labeled as PA-PhSO3H-PAN (3:1)), the value of which is even comparable with those of commercial-available electrolytes being used in PEM fuel cells. Additionally, continuous tests showed that PA-PhSO3H-PAN (3:1) possesses a long-life reusability. This work demonstrates, using the simple acylation reaction with the sulfonated module as precursor, that low-cost and highly effective proton-conductive electrolytes for PEM fuel cells can be facilely achieved.  相似文献   

9.
Using bamboo powder biochar as raw material, high-quality meso/microporous controlled hierarchical porous carbon was prepared—through the catalysis of Fe3+ ions loading, in addition to a chemical activation method—and then used to adsorb copper ions in an aqueous solution. The preparation process mainly included two steps: load-alkali leaching and chemical activation. The porosity characteristics (specific surface area and mesopore ratio) were controlled by changing the K2CO3 impregnation ratio, activation temperature, and Fe3+ ions loading during the activation process. Additionally, three FBPC samples with different pore structures and characteristics were studied for copper adsorption. The results indicate that the adsorption performance of the bamboo powder biochar FBPC material was greatly affected by the meso/micropore ratio. FBPC 2.5-900-2%, impregnated at a K2CO3: biochar ratio of 2.5 and a Fe3+: biochar mass ratio of 2%, and activated at 900 °C for 2 h in N2 atmosphere, has a very high specific surface area of 1996 m2 g−1 with a 58.1% mesoporous ratio. Moreover, it exhibits an excellent adsorption capacity of 256 mg g−1 and rapid adsorption kinetics for copper ions. The experimental results show that it is feasible to control the hierarchical pore structure of bamboo biochar-derived carbons as a high-performance adsorbent to remove copper ions from water.  相似文献   

10.
To assess the prospects for using intense femtosecond laser radiation in biomedicine, it is necessary to understand the mechanisms of its action on biological macromolecules, especially on the informational macromolecule—DNA. The aim of this work was to study the immunocytochemical localization of DNA repair protein foci (XRCC1 and γH2AX) induced by tightly focused femtosecond laser radiation in human cancer A549 cells. The results showed that no XRCC1 or γH2AX foci tracks were observed 30 min after cell irradiation with femtosecond pulses of 1011 W∙cm−2 peak power density. An increase in the pulse power density to 2 × 1011 W∙cm−2 led to the formation of linear tracks consisting both of XRCC1 and γH2AX protein foci localized in the places where the laser beam passed through the cell nuclei. A further increase in the pulse power density to 4 × 1011 W∙cm−2 led to the appearance of nuclei with total immunocytochemical staining for XRCC1 and γH2AX on the path of the laser beam. Thus, femtosecond laser radiation can be considered as a tool for local ionization of biological material, and this ionization will lead to similar effects obtained using ionizing radiation.  相似文献   

11.
Baicalin which has multiple biological activities is the main active component of the root of Scutellaria baicalensis Georgi (SBG). Although its isolation and purification by adsorption methods have aroused much interest of the scientific community, it suffered from the poor selectivity of the adsorbents. In this work, an environmentally benign method was developed to prepare ionic liquids (ILs) grafted silica by using IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim]NTf2) and ethanol as reaction media. The IL 1-propyl-3-methylimidazolium chloride ([C3mim]Cl) grafted silica ([C3mim]+Cl@SiO2) was used to adsorb and purify baicalin from the root extract of Scutellaria baicalensis Georgi (SBG). Experimental results indicated that the adsorption equilibrium can be quickly achieved (within 10 min). The adsorption behavior of [C3mim]+Cl@SiO2 for baicalin was in good agreement with Langmuir and Freundlich models and the adsorption was a physisorption process as suggested by Dubinin–Radushkevich model. Compared with commercial resins, [C3mim]+Cl@SiO2 showed the strongest adsorption ability and highest selectivity. After desorption and crystallization, a purity of baicalin as high as 96.5% could be obtained. These results indicated that the ILs grafted silica materials were promising adsorbents for the adsorption and purification of baicalin and showed huge potential in the purification of other bioactive compounds from natural sources.  相似文献   

12.
Iron ions can be used to degrade tetracycline dispersed in nature. Studies of absorption and fluorescence spectra and quantum chemistry calculations showed that iron is more readily released from Fe(III)-citrate than from Fe(III)-EDTA, so Fe(III)-citrate (Fe(III)-Cit) is more suitable for tetracycline (TC) degradation. At 30 °C, a severe degradation of TC by Fe(III)-Cit occurred as early as after 3 days of incubation in the light, and after 5 days in the dark. In contrast, the degradation of TC by Fe(III)-EDTA proceeded very slowly in the dark. By the fifth day of incubation of TC with Fe(III)-Cit in darkness, the concentrations of the former compound dropped by 55% and 75%, at 20 °C and 30 °C, respectively. The decrease in tetracycline concentrations caused by Fe(III)-EDTA in darkness at the same temperatures was only 2% and 6%, respectively. Light increased the degradation rates of TC by Fe(III)-EDTA to 20% and 56% at 20 °C and 30 °C, respectively. The key role of the light in the degradation of tetracycline by Fe(III)-EDTA was thus demonstrated. The TC degradation reaction showed a second-order kinetics. The rate constants of Fe(III)-Cit-induced TC degradation at 20 °C and 30 °C in darkness were k = 4238 M−1day−1 and k = 11,330 M−1day−1, respectively, while for Fe(III)-EDTA were 55 M−1day−1 and 226 M−1day−1. In light, these constants were k = 15,440 M−1day−1 and k = 40,270 M−1day−1 for Fe(III)-Cit and k = 1012 M−1day−1 and 2050 M−1day−1 at 20 °C and 30 °C; respectively. A possible reason for the higher TC degradation rate caused by Fe(III)-Cit can be the result of its lower thermodynamical stability compared with Fe(III)-EDTA, which we confirmed with our quantum chemistry calculations. Two quantum chemistry calculations showed that the iron complex with EDTA is more stable (the free energy of the ensemble is 15.8 kcal/mol lower) than the iron complex with Cit; hence, Fe release from Fe(III)-EDTA is less effective.  相似文献   

13.
The aim of this study was to assess the photostability of quercetin in the presence of anionic and nonionic polymeric gels with varied compositions of an added component—glycerol. The samples were irradiated continuously at constant temperature. The stability of quercetin in solution and incorporated into the gels was evaluated by an UV-Vis spectrophotometer. FTIR spectroscopy (Fourier-transform infrared spectroscopy) was used to detect the changes in the structure of quercetin depending on the polymer used in the gel, and on the exposure time. Photostabilization is an important aspect of quality assurance in photosensitive compounds. The decomposition rate of quercetin in the ionic preparation of polyacrylic acid (PAA) with glycerol was 1.952·10−3 min−1, whereas the absence of glycerol resulted in a decay rate of 5.032·10−4 min−1. The formulation containing non-ionic methylcellulose resulted in a decomposition rate of quercetin in the range of 1.679·10−3 min−1. The decay rate of quercetin under light influence depended on the composition of the gel. It was found that the cross-linked PAA stabilized quercetin and the addition of glycerol accelerated the photodegradation.  相似文献   

14.
研究了带有不同功能基团的超高交联吸附树脂NG-10和NJ-99对水溶液中芳香两性化合物氨基苯甲酸的静态吸附性能,并与不带功能基团的吸附树脂CHA-111和XAD-4进行了比较.研究结果表明,树脂NJ-99对水溶液中氨基苯甲酸的吸附能力高于其他树脂.邻氨基苯甲酸在4种树脂上的吸附量均大于对氨基苯甲酸,主要原因是其溶解度小.吸附等温线采用经验的Freundlich方程和理论的Langmuir吸附方程来拟合,在实验所研究的浓度范围内,方程的拟合相关性均很好.  相似文献   

15.
A new biosorbent based on Nostoc commune (NC) cyanobacteria, chemically modified with NaOH (NCM), has been prepared, characterized and tested as an effective biomass to remove Pb(II) in aqueous media. The adsorption capacity of NCM was determined to be qe = 384.6 mg g−1. It is higher than several other biosorbents reported in the literature. Structural and morphological characterization were performed by FTIR, SEM/EDX and point zero of charge pH (pHPZC) measurements. NCM biosorbent showed more porous surfaces than those NC with heterogeneous plates including functional adsorption groups such as OH, C = O, COO, COH or NH. Optimal Pb(II) adsorption occurred at pH 4.5 and 5.5 with a biomass dose of 0.5 g L−1. The experimental data of the adsorption process were well fitted with the Freundlich-isotherm model and pseudo-2nd order kinetics, which indicated that Pb(II) adsorption was a chemisorption process on heterogeneous surfaces of NCM. According to the thermodynamic parameters, this process was exothermic (∆H0 < 0), feasible and spontaneous (∆G0 < 0). NCM can be regenerated and efficiently reused up to 4 times (%D > 92%). NCM was also tested to remove Pb (%R~98%) and Ca (%R~64%) from real wastewater.  相似文献   

16.
In order to explore a rapid identification method for the anti-counterfeit of commercial high value collections, a three-step infrared spectrum method was used for the pterocarpus collection identification to confirm whether a commercial pterocarpus bracelet (PB) was made from the precious species of Pterocarpus santalinus (P. santalinus). In the first step, undertaken by Fourier transform infrared spectroscopy (FTIR) spectrum, the absorption peaks intensity of PB was slightly higher than that of P. santalinus only at 1594 cm−1, 1205 cm−1, 1155 cm−1 and 836 cm−1. In the next step of second derivative IR spectra (SDIR), the FTIR features of the tested samples were further amplified, and the peaks at 1600 cm−1, 1171 cm−1 and 1152 cm−1 become clearly defined in PB. Finally, by means of two-dimensional correlation infrared (2DIR) spectrum, it revealed that the response of holocellulose to thermal perturbation was stronger in P. santalinus than that in PB mainly at 977 cm−1, 1008 cm−1, 1100 cm−1, 1057 cm−1, 1190 cm−1 and 1214 cm−1, while the aromatic functional groups of PB were much more sensitive to the thermal perturbation than those of P. santalinus mainly at 1456 cm−1, 1467 cm−1, 1518 cm−1, 1558 cm−1, 1576 cm−1 and 1605 cm−1. In addition, fluorescence microscopy was used to verify the effectiveness of the above method for wood identification and the results showed good consistency. This study demonstrated that the three-step IR method could provide a rapid and effective way for the anti-counterfeit of pterocarpus collections.  相似文献   

17.
In this study, a novel biomass adsorbent based on activated carbon incorporated with sulfur-based binary metal oxides layered nanoparticles (SML-AC), including sulfur (S2), manganese (Mn), and tin (Sn) oxide synthesized via the solvothermal method. The newly synthesized SML-AC was studied using FTIR, FESEM, EDX, and BET to determine its functional groups, surface morphology, and elemental composition. Hence, the BET was performed with an appropriate specific surface area for raw AC (356 m2·g−1) and modified AC-SML (195 m2·g−1). To prepare water samples for ICP-OES analysis, the suggested nanocomposite was used as an efficient adsorbent to remove lead (Pb2+), cadmium (Cd2+), chromium (Cr3+), and vanadium (V5+) from oil-rich regions. As the chemical structure of metal ions is influenced by solution pH, this parameter was considered experimentally, and pH 4, dosage 50 mg, and time 120 min were found to be the best with high capacity for all adsorbates. At different experimental conditions, the AC-SML provided a satisfactory adsorption capacity of 37.03–90.09 mg·g−1 for Cd2+, Pb2+, Cr3+, and V5+ ions. The adsorption experiment was explored, and the method was fitted with the Langmuir model (R2 = 0.99) as compared to the Freundlich model (R2 = 0.91). The kinetic models and free energy (<0.45 KJ·mol−1) parameters demonstrated that the adsorption rate is limited with pseudo-second order (R2 = 0.99) under the physical adsorption mechanism, respectively. Finally, the study demonstrated that the AC-SML nanocomposite is recyclable at least five times in the continuous adsorption–desorption of metal ions.  相似文献   

18.
In this work, low-cost and readily available limestone was converted into nanolimestone chitosan and mixed with alginate powder and precipitate to form a triple nanocomposite, namely limestone—chitosan–alginate (NLS/Cs/Alg.), which was used as an adsorbent for the removal of brilliant green (BG) and Congo red (CR) dyes in aqueous solutions. The adsorption studies were conducted under varying parameters, including contact time, temperature, concentration, and pH. The NLS/Cs/Alg. was characterized by SEM, FTIR, BET, and TEM techniques. The SEM images revealed that the NLS/Cs/Alg. surface structure had interconnected pores, which could easily trap the pollutants. The BET analysis established the surface area to be 20.45 m2/g. The recorded maximum experimental adsorption capacities were 2250 and 2020 mg/g for CR and BG, respectively. The adsorption processes had a good fit to the kinetic pseudo second order, which suggests that the removal mechanism was controlled by physical adsorption. The CR and BG equilibrium data had a good fit for the Freundlich isotherm, suggesting that adsorption processes occurred on the heterogeneous surface with a multilayer formation on the NLS/Cs/Alg. at equilibrium. The enthalpy change (ΔH0) was 37.7 KJ mol−1 for CR and 8.71 KJ mol−1 for BG, while the entropy change (ΔS0) was 89.1 J K−1 mol−1 for CR and 79.1 J K−1 mol−1 BG, indicating that the adsorption process was endothermic and spontaneous in nature.  相似文献   

19.
The presence of carcinogenic bromate (BrO3) in drinking water became a global concern and efforts towards its removal mainly focused on addressing the source. Herein, we rationally designed a porphyrin-based covalent organic framework (PV-COF) with a cationic surface to provide electrostatic interactions and a porphyrin core to induce hydrogen bonding interactions for the efficient removal of BrO3 from water. Through H-bonding and electrostatic interactions, PV-COF exhibited an exceptional bromate removal efficiency (maximum adsorption capacity, Qmax: 203.8 mg g−1) with the fastest uptake rate (kads) of 191.45 g mg−1 min−1. The bromate concentration was reduced to far below the allowed concentration in drinking water (10 ppb) within 20 minutes. We studied the relationship between bromate adsorption and COF surface modification by metalation of the porphyrinic core or neutralization of the viologen linkers by chemical reduction. The bromate adsorption mechanism was studied by EDAX mapping and molecular simulations, and it was found that ion exchange and hydrogen bonding formation drive the adsorption. Importantly, PV-COF could be easily recycled several times without compromising its adsorption efficiency.

A cationic COF removes carcinogenic bromate with a remarkable rate constant of 191.45 g mg−1 min−1.  相似文献   

20.
The poly(glycidyl methacrylate) adsorbents P(GMA–EDMA) and P(GMA–DVB) were synthesized by the radical suspension–polymerization method and farther coupled by oligo-β-cyclodextrin (CDP) to obtain P(GMA–EDMA)–CDP and P(GMA–DVB)–CDP. The synthesized polymeric media were characterized by Fourier transform infrared (FTIR) spectrometer, scanning electron microscopy, and BET surface area. The adsorption of puerarin from aqueous solution onto the four media, i.e., P(GMA–EDMA), P(GMA–DVB), P(GMA–EDMA)–CDP, and P(GMA–DVB)–CDP, was studied. An enhanced adsorption of puerarin apparently presented on grafted media. The interaction between the polymeric media and the puerarin was researched by FTIR. The result shows that the adsorption efficiency on P(GMA–DVB)–CDP driven by multiple weak interactions is much higher than that on P(GMA–EDMA) driven by hydrogen bonding interaction only and on P(GMA–DVB) or P(GMA–EDMA)–CDP driven by two interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号