首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host-guest inclusion complexes represent an important type of supramolecular structure, one which finds widespread applications in diverse areas including separations science, the food industry, molecular sensors and optical devices. There are several driving forces for the formation of such inclusion complexes in solution; one of the most important is hydrogen bonding between the guest and host molecules. The nature or strength of the hydrogen bonding may change upon electronic excitation of the guest, for example during fluorescence studies or when the inclusion complex is used as an optical sensor. In this Perspective article, the impact of hydrogen bonding between excited state guests and their hosts is examined in detail, in terms of the impact on the formation and stability of such excited state complexes, the effects on guest fluorescence, changes in the stability of ground state guest complexes upon electronic excitation, the application of inclusion complexes as fluorescent sensors and materials, and the use of fluorescence spectroscopy for their study.  相似文献   

2.
Poly(muconic acid)s, stereoregular polymer crystals obtained by topochemical polymerization using supramolecular control, function as the layered host solids for organic intercalation, in which alkylamines as the guest species are reversibly inserted into them through an acid-base interaction. We now report a double-intercalation method using alkylamine and pyrene as the guests to control the fluorescence property in the solid state. An aromatic compound can be separately introduced into the hydrophobic layers of the ammonium polymer crystals. The aromatic molecules, which are sandwiched between two alkyl layers, show fluorescence emission from the single molecule but not the excimer. This method can be applied to various organic photofunctional materials showing unique fluorescence properties.  相似文献   

3.
研究了含萘脲基多足化合物溶液的稳态和瞬态光物理行为.由于分子内不同足间脲基的相互作用干扰了萘基的π-π叠合,使分子内萘基的激基缔合物生成受到影响.实验表明:由于三足化合物存在着给电子叔胺基团,因此当萘基被激发时、可因分子内的光诱导电子转移而导致荧光猝灭.正因如此,在三足化合物归一化后的稳态光谱中激基缔合物的发光强度很弱.用皮秒级单光子记数技术测得该化合物的瞬态荧光为三指数衰变过程.其中最长寿命的物种,即属于生成激基缔合物后再分解为萘激发态的部分仅占总量的4%,与稳态的结果相一致.工作表明对这类可用作荧光化学敏感器的三足化合物,如利用其激基缔合物的强度变化为其识别外来物种的敏感部位并不适合.相反,如引入的外来物种能影响化合物的分子内光诱导电子转移,进而影响萘基的发光强度,则是一较好的判别外来物种是否已进入主体的标志.  相似文献   

4.
Novel tetracationic pyrene derivative (1,3,6,8-tetrakis(N-methylpyridinium-4-yl)pyrene, Py4+) was synthesized. Photochemical properties such as fluorescence quantum yield and fluorescence lifetime were observed for Py4+ and Py4+/clay complexes. Judging from Lambert-Beer plot analysis, Py4+ molecules adsorb on the clay surface without aggregation up to 69% versus cation exchange capacity of the clay. Py4+ molecule emits strong fluorescence from an excited state of monomer, while the emission from excimer was not detected, in spite of high density adsorption condition on the solid surface. It is supposed that strong interaction between host and guest by the ‘Size-Matching Effect’ inhibits the formation of excimer on the clay surface.  相似文献   

5.
The nonradiative decay of a π-stacked pair of adenine molecules,one of which was excited by an ultrafast laser pulse,is studied by semiclassical dynamics simulations.This simulation investigation is focused on the effect of the formation of bonded excimer in stacked adenines on the mechanism of ultrafast decay.The simulation finds that the formation of the bonded excimer significantly lowers the energy gap between the LUMO and HOMO and consequently facilitates the deactivation of the electronically excited molecule.On the other hand,the formation of the chemical bond between two stacked adenines restricts the deformation vibration of the pyrimidine of the excited molecule due to the steric effect.This slows down the formation of the coupling between the HOMO and LUMO energy levels and therefore delays the deactivation process of the excited adenine molecule to the electronic ground state.  相似文献   

6.
The microenvironments of the cationic copolymers of styrene and vinylbenzenetrialkylammonium halides were explored by use of fluorescence spectroscopy. 5-Dimethylamino-1-naphthalenesulfonate (DANS) and 1-pyrenebutyrate (PB) were the fluorescent probes selected to bind to the polymers. The fluorescence energy of the former responds to the polarity or hydrophobicity of the microenvironment, whereas the absorption and fluorescence of the latter reveal the extent of ground-state and excited-state interactions. Polyelectrolyte coiling occurs in proportion to the fraction of binding sites occupied with charge-neutralizing, probe molecules. The bound DANS probe shows that coiling makes the binding-site environment more hydrophobic, and the bound PB probe shows that coiling facilitates excimer formation not only with nearest-neighbor pyrene moieties, but also with non-nearest neighbors. With methyl groups at the quaternary nitrogen binding sites, pyrene moiety interactions preceding excimer fluorescence occur in both ground and excited states. When the methyl groups are replaced with butyl or pentyl groups, pyrene excimers still form in the excited state, but the weak, hydrophobic interactions of the pyrene ground state decrease, because the longer alkyl groups serve as hosts for the hydrophobic pyrene moieties.  相似文献   

7.
The structural and electronic properties of perylene molecule, dimers, and excimers have been computationally studied. The present work represents the first systematic study of perylene molecule and dimer forms by means of long‐range corrected time‐dependent density functional theory (TDDFT) approaches. Initially, the study explores the photophysical properties of the molecular species. Vertical transitions to many excited singlet states have been computed and rationalized with different exchange‐correlation functionals. Differences between excitation energies are discussed and compared to the absorption spectrum of perylene in gas phase and diluted solution. De‐excitation energy from the relaxed geometry of the lowest excited singlet is in good agreement with the experimental fluorescence emission. Optimization of several coplanar forms of the perylene pair prove that, contrary to generalized gradient approximation (GGA) and hybrid exchange‐correlation functionals, corrected TDDFT is able to bind the perylene dimer in the ground state. Excitation energies from different dimer conformers point to dimer formation prior to photoexcitation. The fully relaxed excimer geometry belongs to the perfectly eclipsed conformation with D2h symmetry. The excimer equilibrium intermolecular distance is shorter than the separation found for the ground state, which is an indication of stronger interchromophore interaction in the excimer state. Excimer de‐excitation energy is in rather good agreement with the excimer band of perylene in concentrated solution. The study also scans the energy profiles of the ground and lowest excited states along several geometrical distortions. The nature of the interactions responsible for the excimer stabilization is explored in terms of excitonic and charge resonance contributions. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Cholic acid (CA) forms inclusion crystals that have a sandwich-type lamellar structure constructed by the alternative stacking of host bilayers and guest layers. Five disubstituted benzenes, o-toluidine, m-fluoroaniline, o-chlorotoluene, o-bromotoluene, and indene, are accommodated in the two-dimensional void space between the host bilayers at 1:2 host-guest stoichiometries. Thermal gravimetric analysis of the inclusion crystals revealed that all the guest molecules, except o-toluidine, are released in two separate steps, indicating the formation of intermediate crystals after the first guest release. Adequate heat treatment of the four inclusion crystals induces release of half or three quarters of the guest molecules. X-ray diffraction patterns of the intermediate crystals revealed that the crystals have a bilayer structure the same as those of the common CA inclusion crystals. They have one-dimensional cavities, in which the guest molecules are included at a 1:1 or 2:1 host-guest stoichiometry. These facts indicate that the host bilayers move 1.6-4.5 A perpendicular to the layer direction by desorption of the guest molecules. Furthermore, a reverse structural change is also achieved by absorption of the guest molecules to regenerate the starting sandwich-type inclusion crystals. This reversible change in the host bilayer by the guest sorption and desorption is a novel example of organic intercalation materials.  相似文献   

9.
《Chemical physics letters》1986,123(5):441-444
Non-exponential phosphorescence decays of phenanthrene in biphenyl polycrystals have been observed. It is found that excitation with short duration quickens the decay while the decay is slower after excitation with weaker intensity. The origin of the non-exponentiality is ascribed to the distance-dependent interactions between guest molecules in the lowest excited triplet state.  相似文献   

10.
The existence of anthracene excimer in fluid solution was confirmed for the first time by observing the coincidence of the rise time of excimer fluorescence with the decay time of monomer fluorescence with the use of a picosecond laser, a streak camera, and a computer. The continuum model of diffusion theory is found to be applicable to the excimer formation and the encounter distance between anthracene in the excited state and that in the ground state is calculated to be 8 ± 2 Å. The anomalously broad featureless fluorescence observed for 9,9′-bianthryl in glycerol-methanol (9:1) solution was found to be emitted from the species formed only in the excited state and its rise time was found to be coincident with the decay time of fluorescence from anthracene moiety composing 9,9′-bianthryl, α,ω-9,9′-bianthrylpropane, -butane, -hexane, and -dodecane were found not to form excimer in the excited state.  相似文献   

11.
Herein, we report the host–guest‐type complex formation between the host molecules cucurbit[7]uril (CB[7]), β‐cyclodextrin (β‐CD), and dibenzo[24]crown‐8 ether (DB24C8) and a newly synthesized triphenylamine (TPA) derivative 1 X3 as the guest component. The host–guest complex formation was studied in detail by using 1H NMR, 2D NOESY, UV/Vis fluorescence, and time‐resolved emission spectroscopy. The chloride salt of the TPA derivative was used for recognition studies with CB[7] and β‐CD in an aqueous medium. The restricted internal rotation of the guest molecule on complex formation with either of these two host molecules was reflected in the enhancement of the emission quantum yield and the average excited‐state lifetime for the triphenylamine‐based excited states. Studies with DB24C8 as the host molecule were performed in dichloromethane, a medium that maximizes the noncovalent interaction between the host and guest fragments. The Förster resonance energy transfer (FRET) process involving DB24C8 and 1 (PF6)3, as the donor and acceptor fragments, respectively, was established by electrochemical, steady‐state emission, and time‐correlated single‐photon counting studies.  相似文献   

12.
We present a spectroscopic study of terrylene in anthracene crystals at the ensemble and single-molecule levels. In this matrix, single-molecule fluorescence is reduced by three orders of magnitude. Correlation measurements allow us to identify a new relaxation channel, matrix-enhanced intersystem crossing. This process starts with a singlet-to-triplet energy transfer from guest to host, after which the triplet exciton is transferred back to the guest. The intermolecular intersystem crossing is expected whenever the lowest triplet state of the host is located between the lowest singlet S(1) and lowest triplet T(1) excited states of the guest. It must be considered when searching for new host-guest systems for single-molecule spectroscopy.  相似文献   

13.
微孔化合物生成中的结构导向与模板作用   总被引:7,自引:0,他引:7  
本文详细总结了各种客体分子或离子在无机微孔化合物生成中的结构导向与模板作用。讨论了不同合成体系中,客体与无机骨架间的非键相互作用对生成骨架结构的影响以及分子模拟在研究主-客体关系、结构导向剂设计与筛选等方面的进展。无机或有机客体与无机骨架间关系规律的研究,有助于进一步理解结构导向剂(3DA)作用的机理和微孔化合物的晶化与生成机制,对特定结构微孔化合物的定向合成具有一定的意义。  相似文献   

14.
‘Supramolecular photochemistry’ (SP) deals with a study of the properties of molecules in their excited states where the medium plays a significant role. While ‘molecular photochemistry’ (MP) deals with studies in isotropic solution, the SP deals with reactant molecules that interact weakly with their surroundings. The surroundings in general are highly organized assemblies such as crystals, liquid crystals, micelles, and host–guest structures. The behavior of exited molecules in SP unlike in isotropic solution is controlled not only by their inherent electronic and steric properties but also by the immediate surroundings. The weak interactions that control the chemistry include van der Walls, hydrophobic, CH⋯π, π⋯π and several types of hydrogen bonds. In this review the uniqueness of SP compared to MP is highlighted with examples chosen from reactions in crystals, micelles and host–guest assemblies. In spite of distinctly different structures (crystals, micelles, etc.) the influence of the medium could be understood on the basis of a model developed by G.M.J. Schmidt for photoreactions in crystals. The principles of reaction cavity model are briefly outlined in this review. There are a few important features that are specific to SP. For example, highly reactive molecules and intermediates could be stabilized in a confined environment; they enable phosphorescence to be observed at room temperature and favor chiral induction in photochemical reactions. Using such examples the uniqueness of SP is highlighted. The future of SP depends on developing efficient and unique catalytic photoreactions using easily available reaction ‘containers’. In addition, their value in artificial photosynthesis should be established for SP to occupy a center stage in the future.  相似文献   

15.
The excited‐state dynamics of the photostable luminescent organic radical (3,5‐dichloro‐4‐pyridyl)bis(2,4,6‐trichlorophenyl)methyl (PyBTM) doped in a host crystal was investigated by using optically detected magnetic resonance (ODMR) and time‐resolved emission spectroscopies. In the radical system, the unpaired electron can be used as the probe for studying the electronic state and its dynamics. The mixed crystal with a high concentration of the radical showed excimer emission, together with the monomer emission. The ODMR signals were observed with opposite signs for monitoring the monomer and the excimer emissions. Based on their temperature and concentration dependencies, the excited‐state dynamics on the doped crystal and the mechanism of the excimer formation and the ODMR signal generation are discussed with the help of the quantum mechanical simulation of the excited‐state spin dynamics. The initial process of excimer formation has been clarified for the first time from the viewpoint of the spin‐dynamics.  相似文献   

16.
Efficient monomer and excimer emission from various donor-acceptor substituted phenylethynes (PE), which are known as efficient electrogenerated chemiluminescent molecules, was observed with time-resolved fluorescence measurement during the pulse radiolysis in benzene. On the basis of the transient absorption and emission measurements, and steady-state measurements, the formation of PE in the singlet excited state (1PE*) and the excimer (1PE2*) can be interpreted by the charge recombination between the PE radical cation (PE.+) and the PE radical anion (PE.-) which are generated initially from the radiolytic reaction in benzene. It is suggested that the positive and negative charges are localized on the donor and acceptor moieties in the radical cation and anion, respectively. This mechanism is reasonably explained by the relationship between the annihilation enthalpy changes (-DeltaH' degrees ) and singlet excitation energies of donor-substituted phenyl(9-acridinyl)ethynes (1(a-e)). In addition to the monomer emission, the compounds bearing weak donors (1(a-d)) show the excimer emission due to a very small twist angle between the donor and acceptor moieties. For the phenyl(9-cyano-10-anthracenyl)ethynes (2(c) and 2(f)), although they also show the monomer and excimer emissions, it cannot be explained by the relationship between -DeltaH' degrees values and their singlet excitation energies, suggesting the formation of the ICT state and H-type excimer in which two 9-cyano-10-anthracenyl moieties are stacked face-to-face with donor bearing a benzene ring projecting perpendicularly away from each other through the charge recombination between 2.+) and 2.-) and/or triplet-triplet annihilation.  相似文献   

17.
A n l -glutamine-derived functional group was introduced to the bis(arylalkynyl)platinum(II) bipyridine complexes 1 – 4 . The emission could be switched between the 3MLCT excited state and the triplet excimeric state through solvent or temperature changes, which is attributed to the formation and disruption of hydrogen-bonding, π–π stacking, and metal–metal interactions. Different architectures with various morphologies, such as honeycomb nanostructures and nanospheres, were formed upon solvent variations, and these changes were accompanied by 1H NMR and distinct emission changes. Additionally, yellow and red emissive metallogels were formed at room temperature due to the different aggregation behaviors introduced by the substituent groups on bipyridine. The thermoresponsive metallogel showed emission behavior with tunable colors by controlling the temperature. The negative Gibbs free-energy change (ΔG) and the large association constant for excimer formation have suggested that the molecules undergo aggregation through hydrogen-bonding, π–π, and metal–metal interactions, resulting in triplet excimeric emission.  相似文献   

18.
We describe the application of molecular modeling to study problems related to the packing and conformation of oligofluorene molecules in the solid state. First of all, we describe an improved force field for oligofluorenes. The model is based on the MM3 force field for the intramolecular degrees of freedom, but it relies on ab initio calculations for the torsion potential between two monomers and the electrostatic interactions. We also report ab initio calculations of the interaction potentials between fluorene and fluorenone units. The force field has been tested on the crystal structures of a fluorene monomer, a dimer, and a pentamer containing a fluorenone at the center. It has then been employed to study conformational defects of the chains, both in vacuo and in the bulk. We find that certain modes of inversion from right-handed to left-handed helices are also possible within the constraining environment of the crystals. The effect of the presence of two different types of side chains has been also addressed. Finally, the possibility of having two fluorene units parallel and close to each other has been investigated as a model of a ground-state precursor of an excimer. Our simulations show that this configuration is sterically and energetically unfavorable so that formation of an excimer following optical excitation appears to be unlikely.  相似文献   

19.
An excimer emitting crystal (9-cyanoanthracene) doped with a guest molecule (9-methoxyanthracene) having its first singlet level ca. 2000 cm?1 above the host singlet exciton band exhibits efficient energy trapping as demonstrated by host sensitized, red-shifted emission and hetero-photodimerization. It is considered that the trapping is due to exciplex formation between host and guest molecules.  相似文献   

20.
The fate of electronically excited states in DNA base stacks is of tremendous importance for subsequent photochemical damage reactions in the genome. In this study we present a femtosecond broadband pump-probe study on the adenine isomer 2-aminopurine (Ap) incorporated into trinucleotides. After selective excitation of Ap we can monitor energy delocalization between neighboring Ap moieties as well as excited state electron transfer, depending on the sequence of the trinucleotide. Our results establish the time scale for intrastand excimer formation and reveal the lifetime of the excimer state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号