首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Transient radiative transfer in an anisotropically scattering refractive planar medium with pulse irradiation is solved by various approximation methods, such as P?1, P?1 parabolic, P1/3 and two-flux. The time-resolved transmittance and reflectance are calculated for various radiative parameters, and are compared with those obtained by the discrete ordinate method (DOM). Among the approximation methods considered, the P1/3 approximation is the better one, because its results are in overall good agreement with those obtained by the more rigorous DOM, except the transmittance around the peak for neither thin nor very thick slabs. It is found that the curved paths of radiation and the internal reflection of the back scattered radiation enhance the effect of scattering.  相似文献   

2.
齐贝贝  刘迎  贾光一  刘小君 《物理学报》2011,60(12):128701-128701
根据空间分辨漫反射的双点源δ-P1近似理论模型,采用非线性最小二乘法,从反射率的测量数据中反演得到了生物组织的吸收系数μa、有效散射系数μ' s和二阶参量γ.研究表明,在光源与探测器之间距离大于一个输运平均自由程的情况下,双点源δ-P1近似能较好地描述光源附近的光辐射分布,而且能够根据参量γ与μ' s的关系得到组织的各向异性因子g.这些研究对于生物组织的光学性质测量以及漫反射光谱技术的应用具有重要意义. 关键词: 组织光学 P1近似')" href="#">δ-P1近似 光学参量 双点源  相似文献   

3.
本文基于BP神经网络方法结合蒙特卡洛和BEER定律辐射传输模拟方法建立了联合反演各向异性散射介质的辐射特性参数模型。首先采用半球透射率结合半球反射率反演模型反演了各向同性介质的吸收系数和散射系数,在此基础上增加准直透射率,建立了联合反演各向异性介质的吸收系数、散射系数和散射不对称因子三参数联合反演模型。反演结果表明该模型能准确反演出介质辐射特性参数,具有实用意义。此外,为了检验测量误差对模型的反演准确性的影响,分别在不同程度测量误差情况下进行反演,结果显示测量误差对散射不对称因子反演值影响较大。  相似文献   

4.
Infrared radiative properties of zirconia ceramics of porosity about 16% are studied by means of the measurements of directional–hemispherical reflectance and transmittance in the wavelength range from 2.5 to 9 μm. The recently suggested modified two-flux approximation is examined as a simplified basis of the identification procedure. A comparison with the exact numerical solution confirms a good accuracy of this approach for identification of the absorption coefficient of ceramics. An analysis of the results for transport scattering coefficient showed that scattering is determined by isotropic pores with characteristic average radius about 1 μm. The corresponding approximate theoretical model of radiative properties of ceramics is suggested. The absorption coefficient of bulk zirconia in the semi-transparency range is obtained from the data for porous zirconia ceramics.  相似文献   

5.
Radiative transfer in a three-dimensional rectangular enclosure containing radiatively participating gases and particles is studied using the first- and third-order spherical harmonics approximations. Inhomogeneities in the radiative properties of the medium, as well as in the radiation characteristics of the boundaries, are allowed for. The scattering phase function is represented by the delta-Eddington approximation, and it is assumed to be a function of the location in order to account for density variation of the particles in the medium. Numerical solutions of the model equations are obtained using a finite difference scheme. For the purpose of validating the P3-approximation, the results are compared with those based on Hottel's zonal method.  相似文献   

6.
The inherent complexity of the radiative transfer equation makes the exact treatment of radiative heat transfer impossible even for idealized situations and simple boundary conditions. Therefore, a wide variety of efficient solution methods have been developed for the RTE. Among these solution methods the spherical harmonics method, the moment method, and the discrete ordinates method provide means to obtain higher-order approximate solutions to the equation of radiative transfer. Although the assembly of the governing equations for the spherical harmonics method requires tedious algebra, their final form promises great accuracy for any given order, since it is a spectral method (rather than finite difference/finite volume in the case of discrete ordinates). In this study, a new methodology outlined in a previous paper on the spherical harmonics method (PN) is further developed. The new methodology employs successive elimination of spherical harmonic tensors, thus reducing the number of first-order partial differential equations needed to be solved simultaneously by previous PN approximations (=(N+1)2). The result is a relatively small set (=N(N+1)/2) of second-order, elliptic partial differential equations, which can be solved with standard PDE solution packages. General boundary conditions and supplementary conditions using rotation of spherical harmonics in terms of local coordinates are formulated for the general PN approximation for arbitrary three-dimensional geometries. Accuracy of the PN approximation can be further improved by applying the “modified differential approximation” approach first developed for the P1-approximation. Numerical computations are carried out with the P3 approximation for several new two-dimensional problems with emitting, absorbing, and scattering media. Results are compared to Monte Carlo solutions and discrete ordinates simulations and a discussion of ray effects and false scattering is provided.  相似文献   

7.
We propose the PN approximation based on a finite element framework for solving the radiative transport equation with optical tomography as the primary application area. The key idea is to employ a variable order spherical harmonic expansion for angular discretization based on the proximity to the source and the local scattering coefficient. The proposed scheme is shown to be computationally efficient compared to employing homogeneously high orders of expansion everywhere in the domain. In addition the numerical method is shown to accurately describe the void regions encountered in the forward modeling of real-life specimens such as infant brains. The accuracy of the method is demonstrated over three model problems where the PN approximation is compared against Monte Carlo simulations and other state-of-the-art methods.  相似文献   

8.
First, we apply the modified differential approximation (MDA) suggested by Chandrasekhar to transient radiative transfer in a scattering planar medium exposed to collimated pulse irradiation. Next, a hybrid method of the P1/3 approximation suggested by Olson and the MDA is developed. The hybrid method may be referred to as the modified P1/3 approximation (MP1/3A) and is also applied to the same example. Comparisons of the results obtained by solving the MDA, the MP1/3A and the exact integral equation are made. The comparisons show that the temporal distribution of the transmissivity obtained by the MDA contains a small protuberance or an abrupt slope change, which decreases with the decrease of the scattering albedo. The results obtained by the MP1/3A are more accurate than those obtained by the MDA for most of the cases considered, because the MP1/3A corrects the propagation speed of the transmitted radiation.  相似文献   

9.
This article numerically analyses the combined conductive and radiative heat transfer in an absorbing, emitting, and isotropically scattering medium. The non-Fourier heat conduction equation, which includes the time lag between heat flux and the temperature gradient, is used to model the conductive heat transfer in the medium. It predicts that a temperature disturbance will propagate as a wave at finite speed. The radiative heat transfer is solved using the P3 approximation method. In addition, the MacCormack's explicit predictor-corrector scheme is used to solve the non-Fourier problem. The effects of radiation including single scattering albedo, conduction-to-radiation parameter, and optical thickness of the medium on the transient and steady state temperature distributions are investigated in detail. Analysis results indicate that the internal radiation in the medium significantly influences the wave nature. The thermal wave nature in the combined non-Fourier heat conduction with radiation is more obvious for large values of conduction-to-radiation parameter, small values of optical thickness and higher scattering medium. The results from non-Fourier-effect equation are also compared to those obtained from the Fourier equation. Non-Fourier effect becomes insignificant as either time increases or the effect of radiation increases.  相似文献   

10.
We examine critically the accuracy of the two-flux, spherical harmonics and discrete ordinates methods for predicting radiative transfer in a planar, highly-forward scattering and absorbing medium. Numerical results for the radiative fluxes show that the two-flux and P3-approximations yield accurate results compared to solutions based on the FN-method. Indeed, these approximate methods are relatively simple and have potential for generalization to predict radiative transfer in multidimensional systems, as long as an appropriate simplification of the phase function is utilized.  相似文献   

11.
We report an analysis of the hemispherical reflectance of composite slabs made up of two porous layers. To allow realistic modeling of most porous materials, anisotropic scattering is considered. The reflectance is obtained by using the method of spherical harmonics to solve the equation of transfer. Results from the P-11 approximation are presented for a wide range of governing parameters, including the single-scattering albedos and scattering phase-function coefficients for both porous layers. The effects of anisotropic scattering are illustrated.  相似文献   

12.
The first-order spherical harmonics method (or P1 approximation) has found prolific usage for approximate solution of the radiative transfer equation (RTE) in participating media. However, the accuracy of the P1 approximation deteriorates as the optical thickness of the medium is decreased. The modified differential approximation (MDA) was originally proposed to remove the shortcomings of the P1 approximation in optically thin situations. This article presents algorithms to apply the MDA to arbitrary geometry—in particular, geometry with obstructions, and inhomogeneous media. The wall-emitted component of the intensity was computed using a combined view-factor and ray-tracing approach. The Helmholtz equation, arising out of the medium-emitted component, was solved using an unstructured finite-volume procedure. The general procedure was validated for both two-dimensional (2D) and three-dimensional (3D) geometries against benchmark Monte Carlo results. The accuracy of MDA was found to be superior to the P1 approximation for all optical thicknesses. Its accuracy, when compared with the discrete ordinates method (both S6 and S8), was found to be clearly superior in optically thin situations, but problem dependent in optically intermediate and thick situations. For 3D geometries, calculation and storage of the view-factor matrix was found to be a major shortcoming of the MDA. In addition, for inhomogeneous media, calculation of optical distances requires a ray-tracing procedure, which was found to be a bottleneck from a computational efficiency standpoint. Several strategies to reduce both memory and computational time are discussed and demonstrated.  相似文献   

13.
The FN method is used to compute the net radiative heat flux relevant to radiative transfer in an anisotropically scattering, plane-parallel medium with specularly and diffusely reflecting boundaries.  相似文献   

14.
Several numerical and analytical solutions of the radiative transfer equation (RTE) were compared for plane albedo in a problem of solar light reflection by sea water. The study incorporated the simplest case—a semi-infinite one-dimensional plane—parallel absorbing and scattering homogeneous layer illuminated by a monodirectional light beam. Inelastic processes (such as Raman scattering and fluorescence), polarization and air-water surface refraction-reflection effects, were not considered. Algorithms were based on the invariant imbedding method and two different variants of the discrete ordinate method (DOM). Calculations were performed using parameters across all possible ranges (single-scattering albedo ω0 and refracted solar zenith angle θ1), but with a special emphasis on natural waters. All computations were made for two scattering phase functions, which included an almost isotropic Rayleigh phase function and strongly anisotropic double-peaked Fournier-Forand-Mobley phase function. Models were validated using quasi-single-scattering (QSSA) and exponential approximations, which represent the extreme cases of ω0→0 and ω0→1, respectively. All methods yielded relative differences within 1.8% for modeled natural waters. An analysis of plane albedo behavior resulted in the development of a new extended QSSA approximation, which when applied in conjunction with the extended Hapke approximation developed earlier, resulted in a maximum relative error of 2.7%. The study results demonstrated that for practical applications, the estimation of inherent optical properties from observed reflectance can best be achieved using an extended Hapke approximation.  相似文献   

15.
In this work we present a method for determining the optical parameters of turbid media, namely its absorption coefficient (μa) and its reduced scattering coefficient . It is based on the measurement of CW transmittance profiles and analysis of the experimental data by a theoretical model based on the diffusion approximation (DA) of the radiative transfer equation (RTE). The method developed has been investigated with solid polymer probes but it could be applied for liquid materials as well. Experimental results are presented and compared to those of other authors together with a discussion about the accuracy of measurements. In addition, measurements using integrating spheres as well as Monte Carlo simulations are also presented to validate these results.  相似文献   

16.
K.P. Lohs 《Nuclear Physics A》1978,312(3):297-310
Scattering lengths of pionic 3He and 4He and the charge exchange contribution to the 1s width of pionic 3He are calculated within the fixed scatterer approximation of the multiple scattering formalism. Particular attention is focussed on the nuclear physics part and on πN p-wave contributions. For the first time triple scattering and double-spin-flip contributions have been included. We find significant deviations from previous estimates and calculations. Good agreement is achieved with the experimental π?3He scattering length, whereas in the case of 4He a repulsive dispersion contribution is clearly needed. We propose to use the measured 1s level shift of pionic 3He as a constraint to deduce a precise value of the isoscalar πN scattering length. Furthermore, we find that multiple scattering reduces the impulse approximation value for Γ1s(π?3He → π0 3H) by more thsn 20 %. This result casts some doubt on impulse approximation calculations of radiative pion capture as well.  相似文献   

17.
We use the semi-analytical program RCFORGV to evaluate radiative corrections to onephoton radiative emission in the high-energy scattering of pions in the Coulomb field of a nucleus with atomic numberZ. It is shown that radiative corrections can simulate a pion polarizability effect. The average effect is α π rc =?β π rc =(0.20±0.05)×?43 cm3, for pion energies 40–600 GeV. We also study the range of applicability of the equivalent photon approximation in describing onephoton radiative emission.  相似文献   

18.
The aim of the current study is to simulate the laser photon through biological tissue during PDT therapy using Monte Carlo simulation technique. The model is coded using MATLAB. Interaction of laser light with turbid medium e.g. human tissue depends on the optical properties of the medium i.e. refractive index n, absorption coefficient μ a , scattering coefficient μ s and anisotropy factor g. Laser light transport through tissue is governed by the radiative transport equations based on absorption and scattering. Direct sampling is used for step-size generation before interaction via absorption or scattering with the transmitting medium, for deflection and azimuthal angle (θ and ϕ) when the scattering even occurs. The tissue medium considered is divided into radial, axial and angular grid elements and an infinite narrow beam with normal incidence on the tissue is considered. The laser light absorbance inside the tissue, reflectance at the top boundary of the tissue and transmittance at the bottom are estimated and these quantities are shown varying radially and angularly. Results of reflectance, transmittance and fluence are compared with the already published results to confirm the authenticity of our coding and these results are found to lie at only 3–4% error.  相似文献   

19.
The exact solution to radiative heat transfer in combusting flows is not possible analytically due to the complex nature of the integro-differential radiative transfer equation (RTE). Many different approximate solution methods for the solution of the RTE in multi-dimensional problems are available. In this paper, two of the principal methods, the spherical harmonics (P1) and the discrete ordinates method (DOM) are used to calculate radiation. The radiative properties of the gases are calculated using a non-gray gas full spectrum k-distribution method and a gray method. Analysis of the effects of numerical quadrature in the DOM and its effect on computation time is performed. Results of different radiative property methods are compared with benchmark statistical narrow band (SNB) data for both cases that simulate air combustion and oxy-fuel combustion. For both cases, results of the non-gray full spectrum k-distribution method are in good agreement with the SNB data. In the case of oxy-fuel simulations with high partial pressures of carbon dioxide, use of gray method for the radiative properties may cause errors and should be avoided.  相似文献   

20.
The dispersion of photon density waves in strongly scattering media with different widths of the scattering indicatrix is studied by the spherical harmonics method using approximations of various orders (up to the P 7 approximation inclusive). It is shown that, beginning from the P 3 approximation, the reduction in the velocity of photon density waves that is characteristic of the P 1 approximation is eliminated and, independently of the width of the scattering indicatrix in the region of modulation frequencies exceeding 1010 Hz, the velocity of photon density waves asymptotically approaches the speed of light. Our study of the damping of photon density waves has shown that the formula obtained previously for the calculation of the damping coefficient (Imk s , ω)) as a function of the transport scattering coefficient and the velocity is valid at Imk ≤ μss is the light scattering coefficient). The maximum growth in the damping coefficient of photon density waves with a further increase in the frequency is limited by the value of the light scattering coefficient Imk max ≈ μs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号