首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A dedicated in‐vacuum X‐ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four‐crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small‐angle X‐ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing‐incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.  相似文献   

2.
ID29 is an ESRF undulator beamline with a routinely accessible energy range of between 20.0 keV and 6.0 keV (λ = 0.62 Å to 2.07 Å) dedicated to the use of anomalous dispersion techniques in macromolecular crystallography. Since the beamline was first commissioned in 2001, ID29 has, in order to provide an improved service to both its academic and proprietary users, been the subject of almost continuous upgrade and refurbishment. It is now also the home to the ESRF Cryobench facility, ID29S. Here, the current status of the beamline is described and plans for its future are briefly outlined.  相似文献   

3.
The Hard X‐ray Photo‐Electron Spectroscopy (HAXPES) beamline (PES‐BL14), installed at the 1.5 T bending‐magnet port at the Indian synchrotron (Indus‐2), is now available to users. The beamline can be used for X‐ray photo‐emission electron spectroscopy measurements on solid samples. The PES beamline has an excitation energy range from 3 keV to 15 keV for increased bulk sensitivity. An in‐house‐developed double‐crystal monochromator [Si (111)] and a platinum‐coated X‐ray mirror are used for the beam monochromatization and manipulation, respectively. This beamline is equipped with a high‐energy (up to 15 keV) high‐resolution (meV) hemispherical analyzer with a microchannel plate and CCD detector system with SpecsLab Prodigy and CasaXPS software. Additional user facilities include a thin‐film laboratory for sample preparation and a workstation for on‐site data processing. In this article, the design details of the beamline, other facilities and some recent scientific results are described.  相似文献   

4.
Various upgrades have been completed at the XRD1 beamline at the Brazilian synchrotron light source (LNLS). The upgrades are comprehensive, with changes to both hardware and software, now allowing users of the beamline to conduct X‐ray powder diffraction experiments with faster data acquisition times and improved quality. The main beamline parameters and the results obtained for different standards are presented, showing the beamline ability of performing high‐quality experiments in transmission geometry. XRD1 operates in the 5.5–14 keV range and has a photon flux of 7.8 × 109 photons s?1 (with 100 mA) at 12 keV, which is one of the typical working energies. At 8 keV (the other typical working energy) the photon flux at the sample position is 3.4 × 1010 photons s?1 and the energy resolution ΔE/E = 3 × 10?4.  相似文献   

5.
The hard X‐ray beamline BL8 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA is described. This beamline is dedicated to X‐ray studies in the spectral range from ~1 keV to ~25 keV photon energy. The monochromator as well as the other optical components of the beamline are optimized accordingly. The endstation comprises a six‐axis diffractometer that is capable of carrying heavy loads related to non‐ambient sample environments such as, for example, ultrahigh‐vacuum systems, high‐pressure cells or liquid‐helium cryostats. X‐ray absorption spectra from several reference compounds illustrate the performance. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments have been performed. The results show that high‐quality EXAFS data can be obtained in the quick‐scanning EXAFS mode within a few seconds of acquisition time, enabling time‐resolved in situ experiments using standard beamline equipment that is permanently available. The performance of the new beamline, especially in terms of the photon flux and energy resolution, is competitive with other insertion‐device beamlines worldwide, and several sophisticated experiments including surface‐sensitive EXAFS experiments are feasible.  相似文献   

6.
The design and performance of the microfocus spectroscopy beamline at the Diamond Light Source are described. The beamline is based on a 27 mm‐period undulator to give an operable energy range between 2 and 20.7 keV, enabling it to cover the K‐edges of the elements from P to Mo and the L3‐edges from Sr to Pu. Micro‐X‐ray fluorescence, micro‐EXAFS and micro‐X‐ray diffraction have all been achieved on the beamline with a spot size of ~3 µm. The principal optical elements of the beamline consist of a toroid mirror, a liquid‐nitrogen‐cooled double‐crystal monochromator and a pair of bimorph Kirkpatrick–Baez mirrors. The performance of the optics is compared with theoretical values and a few of the early experimental results are summarized.  相似文献   

7.
微通道板2.0~5.5 keV X射线透过率标定   总被引:2,自引:0,他引:2       下载免费PDF全文
 在北京同步辐射3B3中能X射线束线2.0~5.5 keV能段对微通道板(MCP)透过率进行了测量标定。实验表明,MCP在2.0 keV的低能段处和5.5 keV的高能段处的透过率较高,而中段较低。对MCP透射和X光在MCP毛细导管列阵中的全反射两种机制进行了物理建模,分别计算验证。结果发现:X光在毛细导管内掠入射会产生全反射,且能段越低反射率越高;MCP透过率特性正是MCP特殊的结构和材料造成的,为透射和反射两种机制共同贡献的结果,低能端主要来自X光在毛细导管中的全反射贡献,高能端主要来自透射贡献。  相似文献   

8.
The majority of the beamlines at the Brazilian Synchrotron Light Source Laboratory (LNLS) use radiation produced in the storage‐ring bending magnets and are therefore currently limited in the flux that can be used in the harder part of the X‐ray spectrum (above ~10 keV). A 4 T superconducting multipolar wiggler (SCW) was recently installed at LNLS in order to improve the photon flux above 10 keV and fulfill the demands set by the materials science community. A new multi‐purpose beamline was then installed at the LNLS using the SCW as a photon source. The XDS is a flexible beamline operating in the energy range between 5 and 30 keV, designed to perform experiments using absorption, diffraction and scattering techniques. Most of the work performed at the XDS beamline concentrates on X‐ray absorption spectroscopy at energies above 18 keV and high‐resolution diffraction experiments. More recently, new setups and photon‐hungry experiments such as total X‐ray scattering, X‐ray diffraction under high pressures, resonant X‐ray emission spectroscopy, among others, have started to become routine at XDS. Here, the XDS beamline characteristics, performance and a few new experimental possibilities are described.  相似文献   

9.
Photoelectron spectroscopy at high kinetic energy is a research field that receives an increasing interest due to the possibility of studying bulk properties of materials and deeply buried interfaces. Recently, the hard x-ray high kinetic energy electron spectroscopy facility (HIKE) at BESSY in Berlin has become operative at the bending magnet beamline KMC-1. First results show excellent performance. Electron spectra have been recorded using x-ray energies continuously tunable between 2 keV and 12 keV. Using back-scattering conditions in the crystal monochromator very high resolution has been achieved for photon energies around 2 keV, 6 keV and 8 keV.  相似文献   

10.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

11.
A practical method for operating existing undulator synchrotron beamlines at photon energies considerably higher than their standard operating range is described and applied at beamline 19‐ID of the Structural Biology Center at the Advanced Photon Source enabling operation at 30 keV. Adjustments to the undulator spectrum were critical to enhance the 30 keV flux while reducing the lower‐ and higher‐energy harmonic contamination. A Pd‐coated mirror and Al attenuators acted as effective low‐ and high‐bandpass filters. The resulting flux at 30 keV, although significantly lower than with X‐ray optics designed and optimized for this energy, allowed for accurate data collection on crystals of the small protein crambin to 0.38 Å resolution.  相似文献   

12.
The X‐ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi‐purpose high‐energy X‐ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double‐Laue crystal monochromator to provide X‐rays over a large energy range (30–70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi‐lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.  相似文献   

13.
The IMCA‐CAT bending‐magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high‐quality multi‐ and single‐wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending‐magnet beamline achieves a flux of 8 × 1011 photons s?1 at 1 Å wavelength, at a beamline aperture of 1.5 mrad (horizontal) × 86 µrad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) δE/E = 1.5 × 10?4 (at 10 kV). The beamline operates in a dynamic range of 7.5–17.5 keV and delivers to the sample focused beam of size (FWHM) 240 µm (horizontally) × 160 µm (vertically). The performance of the 17‐BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.  相似文献   

14.
北京同步辐射3B3中能束线X射线探测系统性能研究   总被引:7,自引:0,他引:7       下载免费PDF全文
北京同步辐射装置(BSRF)的3B3中能束线的应用,在国内首次提供了一台能区在2—6keV范围、性能优良的单色X射线光源. 对光源的性能进行了研究,并完成了X射线探测器(XRD)灵敏度、滤片厚度、多种晶体衍射效率以及成像板能量响应等指标的标定.XRD标定的相对不确定度好于7%,滤片厚度的不确定度小于3.6%. 关键词: 中能X射线 同步辐射 标定  相似文献   

15.
分析了北京同步辐射实验室4B9B原束线低能分支的构造及弊病,在不影响束线高能分支性能及总体机械结构的基础上提出了改进方案.详细介绍了该设计方案和光束线调试工作及出光后束线的性能测试工作,该测试结果完全符合束线的设计.该束线在同步辐射专用光实验中充分发挥了改进后的优势,取得了令人满意的结果  相似文献   

16.
The protein crystallography beamline (PX‐BL21), installed at the 1.5 T bending‐magnet port at the Indian synchrotron (Indus‐2), is now available to users. The beamline can be used for X‐ray diffraction measurements on a single crystal of macromolecules such as proteins, nucleic acids and their complexes. PX‐BL21 has a working energy range of 5–20 keV for accessing the absorption edges of heavy elements commonly used for phasing. A double‐crystal monochromator [Si(111) and Si(220)] and a pair of rhodium‐coated X‐ray mirrors are used for beam monochromatization and manipulation, respectively. This beamline is equipped with a single‐axis goniometer, Rayonix MX225 CCD detector, fluorescence detector, cryogenic sample cooler and automated sample changer. Additional user facilities include a workstation for on‐site data processing and a biochemistry laboratory for sample preparation. In this article the beamline, other facilities and some recent scientific results are briefly described.  相似文献   

17.
The layout and the characteristics of the hard X‐ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel‐cut monochromator and is dedicated to X‐ray studies in the spectral range from ~4 keV to ~16 keV photon energy. There are two different endstations available. While X‐ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six‐axis kappa diffractometer is installed for X‐ray scattering and reflectivity experiments. Different detector set‐ups are integrated into the beamline control software, i.e. gas‐filled ionization chambers, different photodiodes, as well as a Pilatus 2D‐detector are permanently available. The performance of the beamline is illustrated by high‐quality X‐ray absorption spectra from several reference compounds. First applications include temperature‐dependent EXAFS experiments from liquid‐nitrogen temperature in a bath cryostat up to ~660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface‐sensitive reflection‐mode experiments are presented.  相似文献   

18.
The X‐ray lithography beamline on Indus‐2 is now operational, with two modes of operation. With a pair of X‐ray mirrors it is possible to tune the energy spectrum between 1 and 20 keV with a controlled spectral bandwidth. In its `no optics' mode, hard X‐rays up to 40 keV are available. Features and performance of the beamline are presented along with some example structures. Structures fabricated include honeycomb structures in PMMA using a stainless steel stencil mask and a compound refractive X‐ray lens using a polyimide–gold mask in SU‐8.  相似文献   

19.
天文观察用超软X射线探测器的标定   总被引:1,自引:0,他引:1  
在北京同步辐射装置3W1B光束线上,对天文观测用超软X射线(0.2keV—3.5keV)正比计数管探测器进行了系统地标定.得到了正比计数管的死时间、计数率坪曲线、能量线性、能量分辨、窗材料透过比曲线;借助于已标定过的光电二极管探测器,测量了正比管探测器的能量响应效率,标定不确定度在10%—18%之间.另外,还对正比管系统在卫星上的六道记录和在实验室里的多道记录进行了对比,两种记录方式符合得很好.  相似文献   

20.
A new modular X‐ray‐transparent experimental cell enables tomographic investigations of fluid rock interaction under natural reservoir conditions (confining pressure up to 20 MPa, pore fluid pressure up to 15 MPa, temperature ranging from 296 to 473 K). The portable cell can be used at synchrotron radiation sources that deliver a minimum X‐ray flux density of 109 photons mm?2 s?1 in the energy range 30–100 keV to acquire tomographic datasets in less than 60 s. It has been successfully used in three experiments at the bending‐magnet beamline 2BM at the Advanced Photon Source. The cell can be easily machined and assembled from off‐the‐shelf components at relatively low costs, and its modular design allows it to be adapted to a wide range of experiments and lower‐energy X‐ray sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号