首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organized molecular assemblies have great potential utility in many types of analytical method. This review is concerned with recent of micelles, reversed micelles and micro-emulsions in shifting acid-base equilibria, and in electrochemical measurements, ultraviolet-visible spectrophotometry, micellar-echanced phosphorimetry and fluorimetry, liquid-liquid extraction, flame and plasmas atomic spectrometry, and high-performance and thin-layer liquid chromatography.  相似文献   

2.
A brief summary is presented of the development of organized molecular assemblies entrapped within the supercages of Y-zeolite. Emphasis is placed on work originating in the author's laboratory, although a discussion of some of the important contributions made by other workers, which inspired and facilitated this work, are included. Following pioneering studies by Lunsford and co-workers, which demonstrated the feasibility of encapsulating the common photosensitizer [Ru(bpy)3]2+ within the Y-zeolite supercage, Dutta and co-workers documented efficient photoinduced electron transfer to viologen acceptors occupying neighboring supercages. We have extended the range of available materials by developing synthetically versatile methods to permit the incorporation of heteroleptic complexes, including constituent ligands which contain peripheral nitrogen donor groups; for example, 2,2'-bipyrazine. In an impressive study employing zeolite-excluded acceptors, Dutta and co-workers showed that the reducing equivalents available from photoinduced electron transfer from the zeolite entrapped sensitizer to intra-zeolite acceptors could be transferred to the extra-zeolite acceptors in aqueous suspensions, although the net charge-separation efficiency was low, presumably because of a persistent relatively efficient back-electron transfer process involving the primary photoproduct; that is, the entrapped sensitizer-acceptor dyad. Exploiting the susceptibility of certain heteroleptic complexes to add reactive ruthenium reagents, methods were developed to construct spatially organized donor-sensitizer-acceptor triads within the supercage framework of Y-zeolite. Such assemblies exhibit dramatically improved net charge-separation efficiencies, presumably as a consequence of inhibiting the wasteful back-electron transfer reaction between the initial sensitizer-acceptor couple.  相似文献   

3.
The electronic conductivity of tri-n-octylphosphineoxide (TOPO)-protected CdSe quantum dots (QDs) was studied at the air-water interface using the Langmuir technique within the context of photochemical and photophysical excitation. It was found that, upon photoirradiation with photon energies higher than that of the absorption threshold, the voltammetric currents increased rather substantially with a pair of voltammetric peaks at positive potentials. However, the photoconductivity profiles exhibited a dynamic transition, which was ascribed to the strong affinity of oxygen onto the CdSe surface and the consequent trapping of the photogenerated electrons. The resulting excess of holes led to photocorrosion of the particle cores. The oxygen adsorption and photoetching processes were found to be reversible upon cessation of the photoexcitation. In contrast, only featureless voltammetric responses were observed when the particle monolayers were deposited onto the electrode surface and the film conductance was measured in a vacuum (the overall profiles were analogous to that of a Coulomb blockade). A comparative study was also carried out with a CdSe dropcast thick film immersed in acetonitrile, where the photoconductivity profiles were reversible and almost linear. The latter was attributed to the separation of photogenerated electrons and holes which were subsequently collected at the electrodes under voltammetric control. In the dropcast system, the oxygen effects were minimal which was ascribed to the acetontrile medium that limited the access to oxygen and thus the particles were chemically intact. These studies suggest that chemical environment plays an important role in the determination of the chemical stability and electronic conductivity of CdSe QD thin films.  相似文献   

4.
Surface-less conditions of CO2 laser photosensitized (SF6) oxidation of tetrafluoroethene with molecular O2(3Σ) oxygen reveal that the true gas-phase reaction is accompanied with chemiluminiscence and proceeds via intermediary dioxetane to yield solely carbonyl fluoride.  相似文献   

5.
The interaction of various flavonoids (compounds having C6-C3-C6 configuration) with sodium dodecyl sulfate (SDS) an anionic surfactant was studied through absorption spectroscopy as a function of the concentration of surfactant above and below the critical micelle concentration (CMC) of the surfactant. A mechanism was proposed for the interaction between these flavonoids and anionic surfactants. The approximate number of additive molecules (flavonoids) incorporated per micelle was estimated at a particular concentration of SDS. Incorporation of additive in micelles shifts the UV absorption bands towards higher wavelengths of different magnitude. The spectral shift also depends upon the nature of the surfactant head group. The absorption spectra of the flavonoids in aqueous solution and in methanol are also reported.  相似文献   

6.
A bolaform Schiff base, N,N'-bis(salicylidene)-1,10-decanediamine (BSC10), has been synthesized and its interfacial hydrogen bond formation or molecular recognition with barbituric acid was investigated in comparison with that of a single chain Schiff base, 2-hydroxybenzaldehyde-octadecylamine (HBOA). It has been found that while HBOA formed a monolayer at the air/water interface, the bolaform Schiff base formed a multilayer film with ordered layer structure on water surface. When the Schiff bases were spread on the subphase containing barbituric acid, both of the Schiff bases could form hydrogen bonds with barbituric acid in situ in the spreading films. As a result, an increase of the molecular areas in the isotherms was observed. The in situ H-bonded films could be transferred onto solid substrates, and the transferred multilayer films were characterized by various methods such as UV-vis and FT-IR spectrosopies. Spectral changes were observed for the films deposited from the barbituric acid subphase, which supported the hydrogen bond formation between the Schiff bases and barbituric acid. By measuring the MS-TOF of the deposited films dissolved in CHCl3 solution, it was concluded that a 2:1 complex of HBOA with barbituric acid and a 1:2 complex of BSC10 with barbituric acid were formed. On the other hand, when the multilayer films of both Schiff bases were immersed in an aqueous solution of barbituric acid, a similar molecular recognition through the hydrogen bond occurred. A clear conformational change of the alkyl spacer in the bolaform Schiff base was observed during the complex formation with the barbituric acid.  相似文献   

7.
The present paper highlights results of a systematic study of photoinduced electron transfer, where the fundamental aspects of the photochemistry occurring in solutions and in artificially or self-assembled molecular systems are combined and compared. In photochemical electron transfer (ET) reactions in solutions the electron donor, D, and acceptor, A, have to be or to diffuse to a short distance, which requires a high concentration of quencher molecules and/or long lifetimes of the excited donor or acceptor, which cannot always be arranged. The problem can partly be avoided by linking the donor and acceptor moieties covalently by a single bond, molecular chain or chains, or rigid bridge, forming D-A dyads. The covalent combination of porphyrin or phthalocyanine donors with an efficient electron acceptor, e.g. fullerene, has a two-fold effect on the electron transfer properties. Firstly, the electronic systems of the D-A pair result in a formation of an exciplex intermediate upon excitation both in solutions and in solid phases. The formation of the exciplex accelerates the ET rate, which was found to be as fast as >10(12) s(-1). Secondly, the total reorganization energy can be as small as 0.3 eV, even in polar solvents, which allows nanosecond lifetimes for the charge separated (CS) state. Molecular assemblies can form solid heterogeneous, but organized systems, e.g. molecular layers. This results in more complex charge separation and recombination dynamics. A distinct feature of the ET in organized assemblies is intermolecular interactions, which open a possibility for a charge migration both in the acceptor and in the donor layers, after the primary intramolecular exciplex formation and charge separation in the D-A dyad. The intramolecular ET is fast (35 ps) and efficient, but the formed interlayer CS states have lifetimes in microsecond or even second time domain. This is an important result considering possible applications.  相似文献   

8.
The photophysical properties of a bicyclohexylidene (1DA) and a bicyclohexyl (2DA) substituted with an anilino electron donor and a dicyanoethylene electron acceptor have been studied. Quenching of local donor emission is observed for these compounds as well as quenching of the "pseudo-local" acceptor emission. Transient absorption spectra show dialkylanilino-type radical-cation and dicyanoethylene-type radical-anion absorptions. These results show that intramolecular charge separation takes place in 1DA and 2DA. This was corroborated by time-resolved microwave conductivity measurements from which large excited-state dipole moments were found for both 1DA and 2DA. Time-resolved fluorescence spectroscopy revealed that in the charge-separated state in cyclohexane for 2DA, molecular folding takes place on a nanosecond timescale. For 1DA in cyclohexane, either charge separation takes place in a (fully) folded conformation or very rapid (subnanosecond timescale) folding takes place subsequent to charge separation. In addition to this difference in conformational behavior, the presence of the exocyclic double bond between the cyclohexyl-type rings results in efficient quenching of the anilino donor triplet state and acceleration of the charge recombination rate by a factor of 20.  相似文献   

9.
Helical oligoproline arrays provide a structurally well-defined environment for building photochemical energy conversion assemblies. The use of solid-phase peptide synthesis (SPPS) to prepare four such arrays, consisting of 16, 17, 18, and 19 amino acid residues, is described here. Each array contains the chromophore [Rub'(2)m](PF(6))(2) (b' = 4,4'-diethylamidocarbonyl-2,2'-bipyridine; m = 4-methyl-2,2'-dipyridine-4'-carboxylic acid) and the electron transfer donor PTZ (phenothiazine). The arrays differ systematically in the distance between the redox-active metal complex and PTZ sites. They have been used in photophysical studies to provide insight into the distance dependence of electron transfer. (J. Am. Chem. Soc. 2004, 126, 14506-14514). This work describes the synthesis, purification, and characterization of the oligoproline arrays, including a general procedure for the synthesis of related arrays.  相似文献   

10.
Structures of four molecular squares based on rhenium coordination chemistry have been characterized in the solution phase using pair distribution function (PDF) analyses of wide-angle X-ray scattering measured to better than 1 A spatial resolution. In this report we have focused, in particular, on a comparison of structures for pyrazine- and bipyridine-edged squares measured in solution with structures determined for these molecules in the solid state using X-ray crystallography and models derived from geometry optimization and molecular dynamics simulations using a classical force field. The wide-angle scattering for these assemblies is dominated by pair correlations involving one or more rhenium atoms, with both edge and diagonal Re-Re interactions appearing prominently in PDF plots. The pyrazine square is characterized by a relatively rigid structure in solution, with PDF peak positions and linewidths corresponding closely to those calculated from crystal structure data. For the bipyridine-edged square, the experimental PDF peaks measured along the molecular sides match the positions and linewidths of the PDF peaks calculated from static models. In contrast, PDF peaks measured across the diagonal distances of the molecular square deviate significantly from those calculated from the static crystallographic and energy minimized models. The experimental data are instead indicative of configurational broadening of the diagonal distances. In this respect, molecular dynamics simulations point to the importance of butterfly type motions that modulate the Re-Re diagonal distance. Indeed, the experimental data are reasonably well fit by assuming a bimodal distribution of butterfly conformers differing by approximately 25 degrees in the Re-Re-Re-Re torsion angle. Additionally, the measurements provide evidence for solvent ordering by the supramolecular assemblies detected as regions of solvent association and exclusion.  相似文献   

11.
The analytical techniques used for the physical characterization of organic molecular electronic-based devices are surveyed and discussed. These protocols include methods that are used to probe molecular assemblies such as single wavelength ellipsometry, water contact angle goniometry, cyclic voltammetry, infrared spectroscopy, and X-ray photoelectron spectroscopy, and methods used to measure charge transport properties of devices such as scanning tunneling microscopy, and inelastic electron tunneling spectroscopy. Examples from our laboratory and the literature are given for each of these analytical techniques.  相似文献   

12.
To further extend photoinduced charge separation previously observed for oligothiophene-fullerene dyads (nT-C60), we have studied two novel dual oligothiophene-fullerene triads, 8T-4T-C60 and 4T-8T-C60, where quaterthiophene (4T) and octithiophene (8T) are linked by a trimethylene chain and either one is attached to a fullerene (C60). The cyclic voltammograms and electronic absorption spectra of these triad compounds indicated no electronic interactions among the three components. On the other hand, the emission spectra were markedly perturbed by electron transfer and/or energy transfer from the oligothiophene to fullerene. Detailed comparisons between the emission spectra of the triads (8T-4T-C60 and 4T-8T-C60) and the dyads (4T-C60 and 8T-C60) suggest that the additionally attached octithiophene or quaterthiophene in the triads is involved in the photophysical decay mechanism, and the 8T-4T-C60 triad undergoes photoinduced electron transfer leading to long-distance charge separation. This was actually corroborated by observation of the specific bands due to 8T*+-4T-C60*- species in the transient absorption spectra after photoexcitation of the octithiophene. The sandwich device based on the 8T-4T-C60 triad produced a more effective photovoltaic response to visible light owing to the contribution of the additional octithiophene chromophore compared to that using the dyad 4T-C60. On the other hand, the 4T-8T-C60-based device demonstrated a rather poorer photovoltaic performance when compared to the 8T-C60 device.  相似文献   

13.
A series of ruthenium(II) complex-containing partially quaternized poly(1-vinylimidazole)s with various alkyl side chains such as hexyl (C6RuQPIm), dodecyl (C12RuQPIm), and hexadecyl (C16RuQPIm) were synthesized. The effects of L -tyrosine esters with hexyl (C6Tyr), octyl (C8Tyr), and dodecyl (C12Tyr) on the quenching with methylviologen and photosensitized charge separation reactions were investigated using these metallopolymers as polymer photosensitizers. The quenching reaction took place through both a dynamic quenching process and a static quenching one mediated by the L -tyrosine esters. The kinetic parameters for these processes were obtained from a computed curve fitting using a Stern–Volmer equation derived from a combination of dynamic quenching and static quenching. The parameters had a significant dependence on the lengths of the alkyl groups in the L -tyrosine esters and the alkyl side chains on these metallopolymers. During photosensitized charge separation, the reaction proceeded through these quenching processes, referred to as direct and mediated processes. The initial rates of methylviologen radical formation also depended on these lengths; they increased when the lengths of the alkyl side chain on these metallopolymers and alkyl groups in the L -tyrosine esters were long. Such a dependence was caused by a change in the balance of some effects such as the electrostatic and steric effects. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4360–4367, 1999  相似文献   

14.
Time-resolved area normalized emission spectroscopy (TRANES) is a new method for the analysis of fluorescence of dyes in complex chemical and biological systems (A S R Koti, M M G Krishna and N Periasamy, 2001,J. Phys. Chem. 105, 1767). The model-free method extends the power of time-resolved emission spectroscopy (TRES) analysis and removes the ambiguity in the interpretation when the emission spectrum is time-dependent. Observation of an isoemissive point in TRANES analysis of fluorescence is an unambiguous indication for the presence of two emissive species in the sample. The isoemissive point occurs at a wavelength where the ratio of the radiative rates of the two species is equal to the ratio of their total radiative rates. The polarity-sensitive nile red dye shows time-dependent emission spectra in the organized bilayer assemblies of TX micelle and bilayer egg-phosphotidylcholine (egg-PC) membrane. Time-dependent spectra in complex systems support many important models (solvation model and heterogeneity in the ground and/or excited state). TRANES analysis shows that the fluorescence emission of nile red in TX micelle and egg-PC membrane is due to two emissive species solubilized in different sites.  相似文献   

15.
16.
[P(4)W(35)O(124){Re(CO)(3)}(2)](16-) (1), a Wells-Dawson [α(2)-P(2)W(17)O(61)](10-) polyoxometalate (POM)-supported [Re(CO)(3)](+) complex containing covalent W(VI)-O-Re(I) bonds has been synthesized and characterized by several methods, including X-ray crystallography. This complex shows a high visible absorptivity (ε(470 nm) = 4000 M(-1) cm(-1) in water) due to the formation of a Re(I)-to-POM charge transfer (MPCT) band. The complex was investigated by computational modeling and transient absorption measurements in the visible and mid-IR regions. Optical excitation of the MPCT transition results in instantaneous (<50 fs) electron transfer from the Re(I) center to the POM ligand.  相似文献   

17.
(R)—(+)-Limonene was photooxidized in the presence of Rose Bengal as catalyst. After TLC isolation, the hydroperoxides formed were separated directly by HRGC and analyzed by MS (El; Cl). Each hydroperoxide isomer was then isolated by HPLC for structure determination which after reduction of the HOO group with sodium borohydride was performed by 1H-NMR and 13C-NMR. Six hydroperoxide isomers formed by oxidation of the endocyclic double bond were identified. The compounds eluted from the HRGC column in the following order (proportions are given in brackets) I (40.1%) (1S, 4R)-p-mentha-2, 8-diene 1-hydroperoxide; II (5.8%) (1R, 4R)-p-mentha-2, 8-diene 1-hydroperoxide; III (20.6%) (2R, 4R)-p-mentha-[1(7), 8]-diene 2-hydroperoxide; IV (8.5%) (2R, 4R)-p-mentha-6, 8-diene 2-hydroperoxide; V (4%) (2S, 4R)-p-mentha-6, 8-diene 2-hydroperoxide; and VI (21.0%) (2S, 4R)-p-mentha-[1(7), 8]-diene 2-hydroperoxide. Direct HRGC separation of the limonene hydroperoxides offers, inter alia, the possibility of determining their flavor qualities by HRGC/effluent sniffing.  相似文献   

18.
Three conducting BEDT-TTF charge-transfer salts with tris(oxalato)metallate anions have unit cells containing both[small alpha] and [small beta][double prime] donor packing motifs.  相似文献   

19.
Charge separation in excited states upon visible light absorption is a central process in photovoltaic solar cell applications. Employing state-of-the-art first principles calculations based on time-dependent density functional theory (TDDFT), we simulate electron-hole dynamics in real time and illustrate the microscopic mechanism of charge separation at the interface between organic dye molecules and oxide semiconductor surfaces in dye-sensitized solar cells. We found that electron-hole separation proceeds non-adiabatically on an ultrafast timescale <100 fs at an anthocyanin/TiO(2) interface, and it is strongly mediated by the vibrations of interface Ti-O bonds, which anchor the dye onto the TiO(2) surface. The obtained absorption spectrum and electron injection timescale agree with experimental measurements.  相似文献   

20.
Lee SJ  Kim JS  Lin W 《Inorganic chemistry》2004,43(21):6579-6588
Chiral molecular squares 1-12 based on [M(dppe)](2+) metallocorners (M = Pd or Pt, and dppe = bis(diphenylphosphino)ethane) and new angular bipyridine bridging ligands derived from the 1,1'-binaphthyl framework were readily assembled and characterized by a variety of techniques including infrared, UV-vis, circular dichroism (CD), and NMR spectroscopy, and ESI mass spectrometry. All these chiral metallocycles are highly luminescent in solution at room temperature with quantum efficiency of 0.06-0.63. Interestingly, when equal molar enantiopure molecular squares of opposite handedness were mixed in solution, a new meso dimeric metallocycle with C(2) symmetry formed. This result indicates the lability of the M-pyridyl bonds in these metallocycles, which may hinder their applications in many enantioselective processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号