首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between ganglioside GM1 (GM1) and --dipalmitoylphosphatidylcholine (DPPC) in mixed monolayers was investigated using surface pressure measurements and atomic force microscopy (AFM), and the effects of GM1, surface pressure and temperature on the properties of the membranes were examined. Mixed GM1/DPPC monolayers were deposited on mica using the Langmuir–Blodgett (LB) technique for AFM. GM1 and DPPC were miscible below the 0.2 mole fraction of GM1 and there was attractive interaction between GM1 and DPPC. The AFM images for the GM1/DPPC monolayers (XGM1 < 0.2) at 30 mN m−1 and 25 °C indicated a percolation pattern which means a micro phase separation: namely, the mixed film composed of GM1 and DPPC phase-separated from the DPPC liquid-condensed film. The AFM images for the mixed monolayers at 33 mN m−1 indicated a specific morphology when the surface pressure was varied from 30 to 40 mN m−1. The percolation pattern in the AFM image at 25 °C came to be destroyed with increasing temperature and completely disappeared at 45 °C. The change in the morphology of mixed GM1/DPPC monolayers on varying the surface pressure and temperature is thought to be related to signal transduction and a preventive mechanism against viral infections in the human body.  相似文献   

2.
The adsorption of bovine serum albumin (BSA) at the air/water interface and its effect on the transport of dipalmitoylphosphatidylcholine (DPPC) to form a surface film were studied with tensiometry, infrared reflection absorption spectroscopy (IRRAS), and ellipsometry. For 1, 10, 100, and 1000 ppm BSA solutions, the steady-state tension ranges from 55 to 50 mN m−1. At pulsating area (at 20 cycles min−1), both the minimum and maximum tensions decrease with increasing bulk concentration. Even though the steady-state tension is similar for 100 and 1000 ppm BSA, IRRAS and ellipsometry results indicate that the adsorbed density is higher for 1000 ppm BSA. For 1000 ppm/1000 ppm BSA/DPPC mixture, the tension behavior was found to be similar to that of 1000 ppm BSA when alone. Results from IRRAS and ellipsometry also demonstrate that BSA is the dominant adsorbed component at the air/water interface. Thus, at 1000 ppm, by adsorbing fast and possibly irreversibly, BSA interferes with the transport and adsorption of DPPC and inhibits its ability to lower the surface tension. However, when DPPC is introduced via a spread monolayer mechanism, DPPC expels partly or completely the adsorbed BSA monolayer and then controls the tension behavior with little or no inhibition by BSA. Thus, the competitive adsorption of DPPC and BSA depends strongly on the path or mechanism of introducing DPPC to the surface and involves path-dependent nonequilibrium adsorption phenomena.  相似文献   

3.
The wettability of the solid powder of silica gel was determined via a modified Washburn equation expressed as contact angles. The interfacial tension (γ) between the dodecane and the dilute sodium dodecyl benzene sulfonate (SDBS) aqueous solution was obtained using the spinning drop (γ<10 mN m−1) or drop volume methods (γ>10 mN m−1). Contact angle changes for SDBS aqueous solutions on the surface of a silica gel powder were studied. The average aggregation number of SDBS micelles in aqueous solution was determined using the fluorescence quenching method. The relationship between the wettability of the powder surface, the critical micelle concentration (CMC) of SDBS and the mimic oil recovery of the resident oil on the powder surface has been explored. It has been found that good residual oil recovery was achieved by surface wettability changes at the interfacial tensions around 4–5 mN m−1, which is far from the ‘ultra low’ condition (≤10−3 mN m−1).  相似文献   

4.
The influence of tyloxapol on the dynamic surface tension response of dipalmitoyl phosphatidylcholine (DPPC) dispersions at pulsating air/liquid interfaces was investigated. For a 1000 ppm DPPC dispersion prepared by sonication with a larger particle size, the dynamic surface activity of DPPC was strongly affected by the addition of 100 ppm tyloxapol. With a longer sonication time or smaller particle size, the DPPC inactivation was still observed but was somewhat less significant, resulting in slightly lower dynamic surface tensions. If a DPPC dispersion was sonicated in the presence of tyloxapol, the particle size of DPPC was greatly reduced by tyloxapol and the inhibitory effect of tyloxapol on the dynamic adsorption of DPPC may be significantly diminished. The results suggest that the competitive adsorption of tyloxapol may have a detrimental effect on the dynamic surface tension lowering ability of a DPPC dispersion with the extent depending on the DPPC dispersion state. Nevertheless, the dynamic surface activity of DPPC may be enhanced through the improved dispersion by tyloxapol if an appropriate preparation protocol is applied, and the inhibitory effect of tyloxapol may be reduced or overcome. Copyright 2001 Academic Press.  相似文献   

5.
Dipalmitoyl phosphatidylcholine (DPPC) monolayers were characterised by surface pressure/area isotherms (π/A) and surface dilational rheological parameters at temperatures 20–40°C. The methods used were the Langmuir trough and the pendant drop micro-film balance. The latter allows accurate measurements at higher temperatures and transient drop deformation. Stable DPPC monolayers were found only for low surface pressures, π<15 mN m−1. At higher monolayer compression π decreases over a long time, mainly caused by molecular rearrangement processes in the monolayer starting in the coexisting region. At π>25 mN m−1 and 20°C relaxation experiments give evident of rupturing, brittle monolayer structures. At higher temperatures the monolayers became more fluid-like. π/A-isotherms determined by using both methods principally agree with each other, but show also remarkable differences, which cannot be explained so far satisfactory. Transient drop relaxation experiments were analysed for the short time range (600 s). At 20°C the dilational modulus (r) and the surface dilational viscosity (ξr) passes a stationary maximum at 0.54 nm2 molecule−1 and increase strongly at higher surface coverage, thus indicating crystalline monolayer structure. Increasing temperature from 20 to 30°C causes a rapid decrease of r and ξr and a shift of the stationary maximum to lower surface coverage. No evidence for crystalline structure is found. Further increase of temperature causes r and ξr increase again. This increase is caused by a rising relaxation time, while the elasticity does not change in the same manner. Such intermediate decrease of r and ξr in the range 30–40°C appears to be unusual and can be interpreted as a consequence of strong DPPC interactions and strongly pronounced retardation of monolayer deformation. The study is discussed in connection to the physiology of breathing. For pulmonary surfactants the observed behaviour seems to be understandable. It is however interesting that such complex behaviour is observed for monolayers consisting of DPPC only.  相似文献   

6.
The adsorption behavior of dipalmitoylphosphatidylcholine (DPPC), which is the major component of lung surfactant, at the air/aqueous interface and the competitive adsorption with bovine serum albumin (BSA) were studied with tensiometry, infrared reflection absorption spectroscopy (IRRAS), and ellipsometry. Dynamic surface tensions lower than 1 mN/m were observed for DPPC dispersions, with mostly vesicles, prepared with new protocols, involving extensive sonication above 50 °C. The lipid adsorbs faster and more extensively for DPPC dispersions with vesicles than with liposomes. For DPPC dispersions by a certain preparation procedure at T > Tc, when lipid particles were observed on the surface, dynamic surface tensions as low as 1 mN/m were measured. Moreover, IRRAS intensities and ellipsometric δΔ values were found to be much higher than the values for other DPPC dispersions or spread DPPC monolayers, suggesting that a larger amount of liposomes or vesicles adsorb on the surface. For DPPC/BSA mixtures, the tension behavior is controlled primarily by BSA, which prevents the formation of a dense DPPC monolayer. When BSA is injected into the subphase with a spread DPPC monolayer or into a DPPC dispersion with preadsorbed layers, little or no BSA adsorbs and the DPPC layer remains on the surface. When a DPPC monolayer is spread on a BSA solution at 0.1 wt% at 25 °C, then DPPC lipid can displace the adsorbed BSA molecules. The lack of BSA adsorption, and the expulsion of BSA by DPPC monolayer is probably due to the strong hydrophilicity of the lipid polar headgroup. When a DPPC dispersion is introduced with Trurnit's method or when dispersion drops are sprayed onto the surface of a DPPC/BSA mixture, the surface tension becomes lower and is controlled by DPPC, which can prevent the adsorption of BSA. The results may be important in understanding inhibition of lung surfactants by serum proteins and in designing efficient protocols of surfactant preparation and administration.  相似文献   

7.
In pulmonary tuberculosis, Mycobacterium tuberculosis bacteria reside in the alveoli and are in close proximity with the alveolar surfactant. Mycolic acid in its free form and as cord factor, constitute the major lipids of the mycobacterial cell wall. They can detach from the bacteria easily and are known to be moderately surface active. We hypothesize that these surface-active mycobacterial cell wall lipids could interact with the pulmonary surfactant and result in lung surfactant dysfunction. In this study, the major phospholipid of the lung surfactant, dipalmitoylphosphatidylcholine (DPPC) and binary mixtures of DPPC:phosphatidylglycerol (PG) in 9:1 and 7:3 ratios were modelled as lung surfactant monolayers and the inhibitory potential of mycolic acid and cord factor on the surface activity of DPPC and DPPC:PG mixtures was evaluated using Langmuir monolayers. The mycobacterial lipids caused common profile changes in all the isotherms: increase in minimum surface tension, compressibility and percentage area change required for change in surface tension from 30 to 10 mN/m. Higher minimum surface tension values were achieved in the presence of mycolic acid (18.2 ± 0.7 mN/m) and cord factor (13.28 ± 1.2 mN/m) as compared to 0 mN/m, achieved by pure DPPC film. Similarly higher values of compressibility (0.375 ± 0.005 m/mN for mycolic acid:DPPC and 0.197 ± 0.003 m/mN for cord factor:DPPC monolayers) were obtained in presence of mycolic acid and cord factor. Thus, mycolic acid and cord factor were said to be inhibitory towards lung surfactant phospholipids. Higher surface tension and compressibility values in presence of tubercular lipids are suggestive of an unstable and fluid surfactant film, which will fail to achieve low surface tensions and can contribute to alveolar collapse in patients suffering from pulmonary tuberculosis. In conclusion a biophysical inhibition of lung surfactant may play a role in the pathogenesis of tuberculosis and may serve as a target for the development of new drug loaded surfactants for this condition.  相似文献   

8.
We studied the dynamic surface tension of aqueous solutions of Triton X-100 and Triton X-405 by the maximum bubble pressure and the inclined plate methods in the lifetime range from 0.001 s up to 10 s. It is established that in the region of large and ultimately small surface pressure and time the adsorption follows diffusion kinetics, but in the region of intermediate values of lifetime and surface pressure both the surfactants decrease the surface tension faster than predicted by the existing diffusion theory. We offer a model that provides for the ability of poly(ethylene glycol) chains to adsorb on the water-air interface and to change the area that a molecule occupies on the surface. For this model we achieve full coincidence of the measured values and the values calculated according to the diffusion theory of the dynamic surface tension.

It is ascertained that the Triton X-405 molecule can exist in the surface layer in different states: with the poly(ethylene glycol) chain fully expanded or with it partially or fully submerged in solution. The first state is most probable at surface pressures less than 5 mN m−1, and the second is probable at a pressure of about 8–10 mN m−1. At pressures larger than 15–20 mN m−1, the poly(ethylene glycol) chain is fully submerged in the solution. The Triton X-100 molecule can also expand its poly(ethylene glycol) chain at low pressures and fully submerges it in the solution at higher values of the surface pressure.  相似文献   


9.
Dipalmitoyl phosphatidylcholine (DPPC), one of the main constituents of lung surfactant is mainly responsible for reduction of surface tension to near 0 mN/m during expiration, resisting alveolar collapse. Other unsaturated phospholipids like palmitoyloleoyl phosphatidylglycerol (PG), palmitoyloleoyl phosphatidylcholine (POPC) and neutral lipids help in adsorption of lung surfactant to the air-aqueous interface. Lung surfactant lipids may interact with plasma proteins and hematological agents flooding the alveoli in diseased states. In this study, we evaluated the effects of albumin and erythrocyte membranes on spread films of DPPC alone and mixtures of DPPC with each of PG, POPC, palmitoyloleoyl phosphatidylethanolamine (PE), cholesterol (CHOL) and palmitic acid (PA) in 9:1 molar ratios. Surface tension-area isotherms were recorded using a Langmuir-Blodgett (LB) trough at 37 degrees C with 0.9% saline as the sub-phase. In the presence of erythrocyte membranes, DPPC and DPPC+PA monolayers reached minimum surface tensions of 7.3+/-0.9 and 9.6+/-1.4 mN/m, respectively. Other lipid combinations reached significantly higher minimum surface tensions >18 mN/m in presence of membranes (Newman Keul's test, p<0.05). The relative susceptibility to membrane inhibition was [(DPPC+PG, 7:3)=(DPPC+PG, 9:1)=(DPPC+POPC)=(DPPC+PE)=(DPPC+CHOL)]>[(DPPC+PA)=(DPPC)]. The differential response was more pronounced in case of albumin with DPPC and DPPC+PA monolayers reaching minimum surface tensions less than 2.4 mN/m in presence of albumin, whereas DPPC+PG and DPPC+POPC reached minimum surface tensions of around 20 mN/m in presence of albumin. Descending order of susceptibility of the spread monolayers of lipid mixtures to albumin destabilization was as follows: [(DPPC+PG, 7:3)=(DPPC+PG, 9:1)=(DPPC+POPC)]>[(DPPC+PE)=(DPPC+CHOL)]>[(DPPC+PA)=(DPPC)] The increase in minimum surface tension in presence of albumin and erythrocyte membranes was accompanied by sudden increases in compressibility at surface tensions of 15-30 mN/m. This suggests a monolayer destabilization and could be indicative of phase transitions in the mixed lipid films due to the presence of the hydrophobic constituents of erythrocyte membranes.  相似文献   

10.
The effect of hydrophobic alkylated gold nanoparticles (Au NPs) on the phase behavior and structure of Langmuir monolayers of dipalmitoylphosphatidylcholine (DPPC) and Survanta, a naturally derived commercial pulmonary surfactant that contains DPPC as the main lipid component and hydrophobic surfactant proteins SP-B and SP-C, has been investigated in connection with the potential implication of inorganic NPs in pulmonary surfactant dysfunction. Hexadecanethiolate-capped Au NPs (C(16)SAu NPs) with an average core diameter of 2 nm have been incorporated into DPPC monolayers in concentrations ranging from 0.1 to 0.5 mol %. Concentrations of up to 0.2 mol % in DPPC and 16 wt % in Survanta do not affect the monolayer phase behavior at 20 °C, as evidenced by surface pressure-area (π-A) and ellipsometric isotherms. The monolayer structure at the air/water interface was imaged as a function of the surface pressure by Brewster angle microscopy (BAM). In the liquid-expanded/liquid-condensed phase coexistence region of DPPC, the presence of 0.2 mol % C(16)SAu NPs causes the formation of many small, circular, condensed lipid domains, in contrast to the characteristic larger multilobes formed by pure lipid. Condensed domains of similar size and shape to those of DPPC with 0.2 mol % C(16)SAu NPs are formed by compressing Survanta, and these are not affected by the C(16)SAu NPs. Atomic force microscopy images of Langmuir-Schaefer-deposited films support the BAM observations and reveal, moreover, that at high surface pressures (i.e., 35 and 45 mN m(-1)) the C(16)SAu NPs form honeycomb-like aggregates around the polygonal condensed DPPC domains. In the Survanta monolayers, the C(16)SAu NPs were found to accumulate together with the proteins in the liquid-expanded phase around the circular condensed lipid domains. In conclusion, the presence of hydrophobic C(16)SAu NPs in amounts that do not influence the π-A isotherm alters the nucleation, growth, and morphology of the condensed domains in monolayers of DPPC but not of those of Survanta. Systematic investigations of the effect of the interaction of chemically defined NPs with the lipid and protein components of lung surfactant on the physicochemical properties of surfactant films are pertinent to understanding how inhaled NPs impact pulmonary function.  相似文献   

11.
An anionic surfactant, sodium geranyl sulphate (sodium 3,7-dimethyl-2,6-octadienyl sulphate), was synthesised from the natural extracted monoterpenol, geraniol. The final product yield is 51.5% after recrystallisation. The cis/trans isomer reduced the surface tension of water to 33 ± 0 mN m−1 and yielded a critical micelle concentration of 89 ± 7 mM.  相似文献   

12.
Constituents of egg yolk are key ingredients of many food emulsions. They contribute to create an interfacial film between oil and water, which determines largely the characteristics of the emulsions. Food emulsions prepared with yolk are made at various pHs. However, the effect of pH on the adsorption of yolk constituents and on the composition of the interfacial film is not known. The present study deals with the influence of pH (3, 6 and 9), on protein interface concentration and composition, change in interfacial tension, and oil droplet diameter, of emulsions made with yolk. Emulsions were prepared as follows: 0.5% w/v of yolk; oil volume fraction: 0.375, homogenisation rate: 20 000 rpm/2 min. pH 6 provided the best conditions to prepare emulsion with yolk. The average diameter of oil droplets was lower at pH 6 (8.5 μm) than at pH 3 (11.8 μm) and pH 9 (13.5 μm). The interfacial protein concentration was higher at pH 6 (1.7 mg m−2) than at pH 3 and pH 9 (0.5 mg m−2). At pH 6, all the proteins of yolk, except phosvitin, were adsorbed at the interface and the interfacial tension at steady-state was lower (10 mN m−1) than at pH 3 (15 mN m−1) and pH 9 (30 mN m−1). At pH 3, proteins at the interface are mainly phosvitin, and, at pH 9, some apoproteins of LDL and HDL. The pH modulates the composition of yolk proteins at the interface, mainly by modifying the net charge of the proteins causing their repulsion or dimerisation.  相似文献   

13.
The influence of succinylation on the interfacial behaviour and emulsifying properties of the main storage protein (legumin) from faba beans was studied. Results of surface tension measurements and surface shear rheometry and properties of n-decane-water emulsions indicate an increased interfacial activity by succinylation whereby the 65% succinylated legumin was the most active derivative.

The equilibrium surface pressure Πe increased from 16.6 to 20.21 mN m−1 and the critical association concentration, i.e. the subphase concentration at which the plateau of Πe was reached, strongly decreased with succinylation from 76.6 × 10−6 to 0.84 × 10−6 g ml−1. Spread and adsorbed films of legumin exhibited purely viscous behaviour under shear stress whereby the viscosity strongly increased with succinylation (from 7.93 to 93.36 μN s m−1). The droplet size of legumin-stabilized emulsions decreased and the coalescence stability increased with succinylation. The comparison with acetylated legumin supports the view that the dissociated but rather globular subunit is the most interfacially active component of acylated legumin.  相似文献   


14.
It was found that surfactin, an anionic lipopeptide biosurfactant, forms large rod-shaped micelles (micellar weight, 179 000, aggregation number n = 173) having a critical CMC of 9.4 × 10−6 M and a surface tension at the CMC γCMC of 30 mN m−1 in 0.1 M NaHCO3 (pH 8.7). This excellent surface-active behaviour was attributed to the ease of piling of surfactin molecules organized by β-sheet formation. Surfactin also showed a possible organization between molecules due to β-sheet structure at the air-water interface under forced experimental conditions.  相似文献   

15.
The hydrogen permeation and stability of tubular palladium alloy (Pd–23%Ag) composite membranes have been investigated at elevated temperatures and pressures. In our analysis we differentiate between dilution of hydrogen by other gas components, hydrogen depletion along the membrane length, concentration polarization adjacent to the membrane surface, and effects due to surface adsorption, on the hydrogen flux. A maximum H2 flux of 1223 mL cm−2 min−1 or 8.4 mol m−2 s−1 was obtained at 400 °C and 26 bar hydrogen feed pressure, corresponding to a permeance of 6.4 × 10−3 mol m−2 s−1 Pa−0.5. A good linear relationship was found between hydrogen flux and pressure as predicted for rate controlling bulk diffusion. In a mixture of 50% H2 + 50% N2 a maximum H2 flux of 230 mL cm−2 min−1 and separation factor of 1400 were achieved at 26 bar. The large reduction in hydrogen flux is mainly caused by the build-up of a hydrogen-depleted concentration polarization layer adjacent to the membrane due to insufficient mass transport in the gas phase. Substituting N2 with CO2 results in further reduction of flux, but not as large as for CO where adsorption prevail as the dominating flow controlling factor. In WGS conditions (57.5% H2, 18.7% CO2, 3.8% CO, 1.2% CH4 and 18.7% steam), a H2 permeance of 1.1 × 10−3 mol m−2 s−1 Pa−0.5 was found at 400 °C and 26 bar feed pressure. Operating the membrane for 500 h under various conditions (WGS and H2 + N2 mixtures) at 26 bars indicated no membrane failure, but a small decrease in flux. A peculiar flux inhibiting effect of long term exposure to high concentration of N2 was observed. The membrane surface was deformed and expanded after operation, mainly following the topography of the macroporous support.  相似文献   

16.
The adsorption of fibronectin on a series of different surfaces was investigated with in situ ellipsometry. For silica and methylated silica, the adsorbed amount (Γ), the adsorbed layer thickness (δel) and the mean adsorbed layer refractive index (nf) were obtained by a procedure involving studies of the bare substrate at two different ambient refractive indices, as well as four-zone averaging. It was found that the adsorbed amount of fibronectin was the same (1.9 ± 0.1 mg m−2) on both silica and methylated silica surfaces. However, the adsorbed layers formed on methylated silica were more extended and had a lower average protein concentration than those formed on silica. Furthermore, on both silica and methylated silica, an increasing adsorbed amount is achieved both by a denser packing of the fibronectin molecules and by a growth of the adsorbed layer normal to the surface. Furthermore, the adsorption of fibronectin on lipid surfaces was investigated. It was found that the adsorption of fibronectin on phosphatidic acid was quite significant (2.2 ± 0.2 mg m−2), while that on phosphatidylcholine, phosphatidylinositol and phosphatidylserine was much smaller (all 0.1 ± 0.05 mg m−2). These results are correlated to findings on the adsorption of fibrinogen on these surfaces, as well as on the opsonization of lipid-stabilized colloidal particles.  相似文献   

17.
NaY zeolite tubular membranes in an industrial scale of 80 cm long were synthesized on monolayer and asymmetric porous supports. The quality of synthesized membranes were evaluated by pervaporation (PV) experiments in 80 cm long at 75 °C in a mixture of water (10 wt.%)/ethanol (90 wt.%), resulting in higher permeation fluxes of 5.1 kg m−2 h−1 in the monolayer type membrane and of 9.1–10.1 kg m−2 h−1 in the asymmetric-type membranes, respectively. The uniformity with small performance fluctuation in longitudinal direction of the membranes were observed by PV for 10–12 cm long samples at 50 °C in a mixture of methanol (10 wt.%)/MTBE (90 wt.%). The ethanol single component permeation experiments in PV and vapor permeation (VP) up to 130 °C and 570 kPa were performed to determine the relations between the ethanol flux and the ethanol pressure difference across the membrane which is represented by permeance (Π, mol m−2 s−1 Pa−1) for estimate of potential of ethanol extraction through the present NaY zeolite membranes applying feasible studies. Results indicate that (1) the permeation fluxes are linearly proportional to the driving force of vapor pressure for each sample in VP and PV. The permeances through an asymmetric support type membrane were rather constant of 0.6–1.2 × 10−7 mol m−2 s−1 Pa−1 in the wide temperature range of 90–130 °C in PV and VP, indicating that the ethanol permeances have weak temperature dependency with the feed at the saturated vapor pressure.

The results of superheating VP experiments showed that ethanol permeation fluxes are increased with increasing of the degree of superheating at a given constant feed vapor pressure. The ethanol permeances are increased with increasing of temperature at a given feed vapor pressure. The superheating VP could be a feasible process in industry.  相似文献   


18.
Stable trichloro-octadecyl silane (ODS) derivatives of a 5 nm γ-alumina ceramic membrane were prepared. Gas permeabilities of the untreated membrane did not show Knudsen diffusion at 20°C. Gas permeabilities of the ODS membrane were three orders of magnitude lower; He, Ne, Ar, CO2, C3H8 have near constant permeabilities 360 mol s−1 m−2 bar−1, except methane which has the highest permeability of the group, 481 mol s−1 m−2 bar−1. The mechanism of diffusion is solution/diffusion. Remarkably, permeabilities of ODS-alumina membrane were reduced by 5 X after exposure to a pressure difference of 1 atm (active layer side) against vacuum for only 10 min. The effect was metastable but could be reversed on standing for several hours, reversal of pressure difference or after washing with (hydrocarbon solvent) toluene. The mechanism was presumed to be due to movement of the octadecyl-hydrocarbon chains of the silane monolayer causing a partially blocked pore structure; perhaps a unique example of self-fouling.  相似文献   

19.
The monolayer behavior of three mixed systems of dipalmitoyl phosphatidyl choline (DPPC) with sterols; cholesterol (Ch), stigmasterol (Stig), and cholestanol (Chsta) formed at the interface of air/water (phosphate buffer solution at 7.4 with addition of NaCl) was investigated in terms of surface pressure (π) and molecular occupation surface area (A) relation. A series of πA curves at every 0.1 mol fraction of each sterol for the three combinations of mixed systems were obtained at 25.0 °C.

On the basis of the πA curves, the additivity rule in regard to A versus sterol mole fraction (Xst) was examined at discrete surface pressures such as 5, 10, 15, 20, 25, 30 mN m−1, and then from the obtained AXst curves the partial molecular areas (PMA) were determined. The AXst relation exhibited a marked negative deviation from ideal mixing in the pressure range below 10 mN m−1, i.e. in the expanded liquid film region (below the transition pressure of DPPC).

The PMA of Ch at π=5 mN m−1, for example, was found to be conspicuously negative in the range of XCh=0–0.2 (about −0.4 nm2 per molecule) and slightly positive (ca. 0.1 nm2 per molecule) in the range XCh=0.2 to 0.4. Above XCh=0.5, Ch’s PMA was almost the same as the surface area of pure Ch, while DPPC’s PMA was reduced to 60% of that of the pure system.

Excess Gibbs energy (ΔG(ex)) as a function of Xst was estimated at different pressures. Applying the regular solution theory to thermodynamic analysis of ΔG(ex), the activity coefficients (f1 and f2) of DPPC and the respective sterols as well as the interaction parameter (Ip) in the mixed film phase were evaluated; the results showed a marked dependence on Xst.

Compressibility Cs and elasticity Cs−1 were also examined. These physical parameters directly reflected the mechanical strength of formed monolayer film.

Phase diagrams plotting the collapse pressure (πc) against Xst were constructed, and the πc versus Xst curves were examined for the respective mixed systems in comparison with the simulated curves of ideal mixing based on the Joos equation.

Comparing the monolayer behavior of the three mixed systems, little remarkable difference was found in regard to various aspects. In common among the three combinations, the mole fraction dependence in monolayer properties was classified into three ranges: 0<Xst<0.2, 0.2<Xst<0.4 and 0.5<Xst<1. How the difference in the chemical structure of the sterols influenced the properties was examined in detail.  相似文献   


20.
New hydrophobic poly(phthalazinone ether sulfone ketone) (PPESK) hollow fiber composite membranes coated with silicone rubber and with sol–gel polytrifluoropropylsiloxane were obtained by surface-coated modification method. The effects of coating time, coating temperature and the concentration of silicone rubber solution on the vacuum membrane distillation (VMD) properties of silicone rubber coated membranes were investigated. It was found that high water permeate flux could be gotten in low temperature and low concentration of silicone rubber solution. When the coating temperature is 60 °C, the coating time is 9 h and the concentration of silicone rubber solution is 5 g L−1 the water permeate flux of the silicone rubber coated membrane is 3.5 L m−2 h−1. The prepolymerization time influence the performance of polytrifluoropropylsiloxane coated membranes, and higher prepolymerization time decrease the water permeate flux of the membrane. The water permeate flux and the salt rejection was 3.7 L m−2 h−1 and 94.6%, respectively in 30 min prepolymerization period. The VMD performances of two composite membranes during long-term operation were studied, and the results indicated that the VMD performances of two composite membranes are quite stable. The salt rejection of silicone rubber coated membrane decreased from 99 to 95% and the water permeate flux fluctuated between 2.0 and 2.5 L m−2 h−1. The salt rejection of polytrifluoropropylsiloxane coated membrane decreased from 98 to 94% and the water permeate flux fluctuated in 1 L m−2 h−1 range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号