首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The two-dimensional flow of a viscous incompressible fluid near the leading edge of a slender airfoil is considered. An asymptotic theory of this flow is constructed on the basis of an analysis of the Navier—Stokes equations at large Reynolds numbers by means of matched asymptotic expansions. A central feature of the theory is the region of interaction of the boundary layer and the exterior inviscid flow; such a region appears on the surface of the airfoil in a definite range of angles of attack. The boundary-value problem for this region is reduced to an integrodifferential equation for the distribution of the friction. This equation has been solved numerically. As a result, closed separation regions are constructed, and the angle of attack at which separation occurs is found.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 42–51, January–February, 1981.I thank V. V. Sychev and Vik. V, Sychev for assistance.  相似文献   

2.
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re c  = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re c  = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c  = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.  相似文献   

3.
This is an experimental study on the boundary layer over an airfoil under steady and unsteady conditions.It specifically deals with the effect of plunging oscillation on the laminar/turbulent characteristics of the boundary layer.The wind tunnel measurements involved surfacemounted hot-film sensors and boundary-layer rake.The experiments were conducted at Reynolds numbers of 0.42×10 6 to 0.84 × 10 6 and the reduced frequency was varied from 0.01 to 0.11.The results of the quasi-wall-shear stress as well as the boundary layer velocity profiles provided important information about the state of the boundary layer over the suction surface of the airfoil in both static and dynamic cases.For the static tests,boundary layer transition occurred through a laminar separation bubble.By increasing the angle of attack,disturbances and the transition location moved toward the leading edge.For the dynamic tests,earlier transition occurred with increasing rather than decreasing effective angle of attack.The mean angle of attack and the oscillating parameters significantly affected the state of the boundary layer.By increasing the reduced frequency,the boundary layer transition was promoted to the upstroke portion of the equivalent angle of attack,but the quasi skin friction coefficient was decreased.  相似文献   

4.
Micro Air Vehicles (MAVs) can be difficult to control in the outdoor environment as they fly at relatively low speeds and are of low mass, yet exposed to high levels of freestream turbulence present within the Atmospheric Boundary Layer. In order to examine transient flow phenomena, two turbulence conditions of nominally the same longitudinal integral length scale (Lxx/c?=?1) but with significantly different intensities (Ti?=?7.2?% and 12.3?%) were generated within a wind tunnel; time-varying surface pressure measurements, smoke flow visualization, and wake velocity measurements were made on a thin flat plate airfoil. Rapid changes in oncoming flow pitch angle resulted in the shear layer to separate from the leading edge of the airfoil even at lower geometric angles of attack. At higher geometric angles of attack, massive flow separation occurred at the leading edge followed by enhanced roll up of the shear layer. This lead to the formation of large Leading Edge Vortices (LEVs) that advected at a rate much lower than the mean flow speed while imparting high pressure fluctuations over the airfoil. The rate of LEV formation was dependent on the angle of attack until 10° and it was independent of the turbulence properties tested. The fluctuations in surface pressures and consequently aerodynamic loads were considerably limited on the airfoil bottom surface due to the favorable pressure gradient.  相似文献   

5.
The conditions of nonsymmetric trailing edge flow with separation are investigated. Solutions of the equations for the interaction zone in the neighborhood of the trailing edge of a thin profile at an angle of attack of the order O(Re–1/16) in the separated flow regime are constructed numerically. It is shown that for this zone a solution exists up to a certain angle of attack. In all the regimes the value of the friction on the upper surface at the very end of the trailing edge remains a positive quantity. The solution of the equations in the separated flow regimes is found to be nonunique. The flow over the leading edge is assumed to be unseparated, and the separation at the trailing edge, if present, is assumed to be localized in the interior of the boundary layer. The flow over a Kutta profile at zero angle of attack is taken as an example. In this case the satisfaction of the Chaplygin-Joukowsky condition at the trailing edge ensures smooth flow over both the trailing and leading edges.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 55–59, July–August, 1989.  相似文献   

6.
 The spatial-temporal progressions of the leading-edge stagnation, separation and reattachment points, and the state of the unsteady boundary layer developed on the upper surface of a 6 in. chord NACA 0012 airfoil model, oscillated sinusoidally within and beyond the static-stall angle, were measured using 140 closely-spaced, multiple hot-film sensors (MHFS). The MHFS measurements show that (i) the laminar separation point and transition were delayed with increasing α and the reattachment and relaminarization were promoted with decreasing α, relative to the static case, (ii) the pitchup motion helped to keep the boundary layer attached to higher angles of attack over that could be obtained statically, (iii) the dynamic stall process was initiated by the turbulent flow separation in the leading-edge region as well as by the onset of flow reversal in the trailing-edge region, and (iv) the dynamic stall process was found not to originate with the bursting of a laminar separation bubble, but with a breakdown of the turbulent boundary layer. The MHFS measurements also show that the flow unsteadiness caused by airfoil motion as well as by the flow disturbances can be detected simultaneously and nonintrusively. The MHFS characterizations of the unsteady boundary layers are useful in the study of unsteady separated flowfields generated by rapidly maneuvering aircraft, helicopter rotor blades, and wing energy machines. Received: 17 June 1997 / Accepted: 10 December 1997  相似文献   

7.
Flow past model wings is experimentally investigated in a subsonic wind tunnel at large angles of attack at which the laminar boundary layer separates near the leading edge of the wing (flow stall). The object of the study was the flow structure within the separation zone. The carbon-oil visualization of surface streamlines used in the experiments showed that in the separation zone there exist one or more pairs of large-scale vortices rotating in the wing plane. Certain general properties of the vortex structures in the separation zone are found to exist, whereas the flow patterns may differ depending on the model aspect ratio, the yaw angle, and other factors.  相似文献   

8.
To comprehensively understand the effects of Kelvin–Helmholtz instabilities on a transitional separation bubble on the suction side of an airfoil regarding as to flapping of the bubble and its impact on the airfoil performance, the temporal and spatial structure of the vortices occurring at the downstream end of the separation bubble is investigated. Since the bubble variation leads to a change of the pressure distribution, the investigation of the instantaneous velocity field is essential to understand the details of the overall airfoil performance. This vortex formation in the reattachment region on the upper surface of an SD7003 airfoil is analyzed in detail at different angles of attack. At a Reynolds number Re c < 100,000 the laminar boundary layer separates at angles of attack >4°. Due to transition processes, turbulent reattachment of the separated shear layer occurs enclosing a locally confined recirculation region. To identify the location of the separation bubble and to describe the dynamics of the reattachment, a time-resolved PIV measurement in a single light-sheet is performed. To elucidate the spatial structure of the flow patterns in the reattachment region in time and space, a stereo scanning PIV set-up is applied. The flow field is recorded in at least ten successive light-sheet planes with two high-speed cameras enclosing a viewing angle of 65° to detect all three velocity components within a light-sheet leading to a time-resolved volumetric measurement due to a high scanning speed. The measurements evidence the development of quasi-periodic vortex structures. The temporal dynamics of the vortex roll-up, initialized by the Kelvin–Helmholtz (KH) instability, is shown as well as the spatial development of the vortex roll-up process. Based on these measurements a model for the evolving vortex structure consisting of the formation of c-shape vortices and their transformation into screwdriver vortices is introduced.  相似文献   

9.
The present paper presents time-resolved volumetric Particle Tracking Velocimetry measurements in a water towing tank on a SD7003 airfoil, performed at a Reynolds number of 60,000 and a 4° angle of attack. The SD7003 airfoil was chosen because of its long mid-chord and stable laminar separation bubble (LSB), occurring on the suction side of the airfoil at low Reynolds numbers. The present study focuses on the temporal resolution of unsteady large-scale vortex structures emitted from the LSB. In contrast to other studies, where only the observation of the flow in the transition region was examined, the entire flow from the leading edge to the far wake of the airfoil was investigated here.  相似文献   

10.
绕振荡水翼流动及其转捩特性的数值计算研究   总被引:1,自引:0,他引:1  
吴钦  王国玉  黄彪 《力学学报》2014,46(1):60-69
通过对比标准k-ω SST 湍流模型和基于标准k-ω SST 湍流模型修正的γ-Reθ 转捩湍流模型对绕振荡NACA66 水翼流动的数值计算结果与实验结果,对水翼振荡过程的水动力特性和流场结构变化进行了分析研究. 结果表明:与标准k-ω SST 湍流模型的数值计算结果相比,基于标准k-ω SST 湍流模型修正的γ-Reθ 转捩湍流模型能有效预测绕振荡翼型流场结构和水动力特性,捕捉流场边界层发生的流动分离和转捩现象;绕振荡水翼的流动过程可分为5 个特征阶段,当来流攻角较小时,在水翼前缘发生层流向湍流的转捩现象,水翼动力特征曲线出现变化拐点;随着来流攻角的增大,顺时针尾缘涡逐渐形成并向水翼前缘发展;当攻角较大时,前缘涡分离导致动力失速,水翼的动力特征曲线出现大幅波动;水翼处于顺时针向下旋转阶段,绕水翼的流动状态逐渐由湍流过渡为层流.  相似文献   

11.
In the present work, experimental tests are conducted to study boundary layer transition over a supercritical airfoil undergoing pitch oscillations using hot-film sensors. Tests have been undertaken at an incompressible flow. Three reduced frequencies of oscillations and two mean angles of attack are studied and the influences of those parameters on transition location are discussed. Different algorithms are examined on the hot-film signals to detect the transition point. Results show the formation of a laminar separation bubble near the leading edge and at relatively higher angles of attack which leads to the transition of the boundary layer. However, at lower angles of attack, the amplification of the peaks in voltage signal indicate the emergence of the vortical structures within the boundary layer, introducing a different transition mechanism. Moreover, an increase in reduced frequency leads to a delay in transition onset, postponing it to a higher angle of attack, which widens the hysteresis between the upstroke and downstroke motions. Rising the reduced frequency yields in weakening or omission of vortical disturbances ensuing the removal of spikes in the signals. Of the other important results observed, is faster movement of the relaminarization point in the higher mean angle of attack. Finally, a time–frequency analysis of the hot-film signals is performed to investigate evolution of spectral features of the transition due to the pitching motion. An asymmetry is clearly observed in frequency pattern of the signals far from the bubble zone towards the trailing edge; this may reflect the difference between the transition and relaminarization physics. Also, various ranges of frequency were obtained for different transition mechanisms.  相似文献   

12.
绕振荡水翼流动及其转捩特性的数值计算研究   总被引:1,自引:0,他引:1  
吴钦  王国玉  黄彪 《力学学报》2014,46(1):60-69
通过对比标准k-ω SST 湍流模型和基于标准k-ω SST 湍流模型修正的γ-Reθ 转捩湍流模型对绕振荡NACA66 水翼流动的数值计算结果与实验结果,对水翼振荡过程的水动力特性和流场结构变化进行了分析研究. 结果表明:与标准k-ω SST 湍流模型的数值计算结果相比,基于标准k-ω SST 湍流模型修正的γ-Reθ 转捩湍流模型能有效预测绕振荡翼型流场结构和水动力特性,捕捉流场边界层发生的流动分离和转捩现象;绕振荡水翼的流动过程可分为5 个特征阶段,当来流攻角较小时,在水翼前缘发生层流向湍流的转捩现象,水翼动力特征曲线出现变化拐点;随着来流攻角的增大,顺时针尾缘涡逐渐形成并向水翼前缘发展;当攻角较大时,前缘涡分离导致动力失速,水翼的动力特征曲线出现大幅波动;水翼处于顺时针向下旋转阶段,绕水翼的流动状态逐渐由湍流过渡为层流.   相似文献   

13.
This study presents the influence of pitch angle of an airfoil on its near-field vortex structure as well as the aerodynamic loads during a dynamic stall process. Dynamic stall behavior in a sinusoidally pitching airfoil is usually analyzed at low to medium reduced frequencies and with the maximum angle of attack of the airfoil not exceeding 25°. In this work, we study dynamic stall of a symmetric airfoil at medium to high reduced frequencies even as the maximum angle of attack goes from 25° to 45°. The evolution and growth of the laminar separation bubble, also known as a dynamic stall vortex, at the leading edge and the trailing edge are studied as the pitch cycle goes from the minimum to the maximum angle of attack. The effect of reduced frequencies on the vortex structure as well as the aerodynamic load coefficients is investigated. The reduced frequency is shown to be a bifurcation parameter triggering period doubling behavior. However, the bifurcation pattern is dependent on the variation of the pitch angle of incidence of the airfoil.  相似文献   

14.
Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0° to 21°. The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the convection speed of pressure fluctuations in the separated shear layer are measured to be between 35 and 50% of the edge velocity, consistent with predictions of linear stability theory for separated shear layers.  相似文献   

15.
Small-Scale Roughness Effects on Laminar Separation   总被引:1,自引:0,他引:1  
In this study an interacting boundary-layer (IBL) algorithm is used to investigate small-scale surface roughness effects on the laminar separation mechanism, where small-scale is intended to mean roughness fully contained within the boundary layer. Steady, laminar breakaway separation is computed for two-dimensional flow past a symmetric biconvex airfoil with small-scale roughness elements added to the surface. In this case the flow separation is generated at the trailing edge of a biconvex airfoil, but results are relevant to laminar separation points in general such as that occurring in the leading-edge region. The study is interested primarily in the laminar separation point, and not necessarily the entire bubble and downstream region. The use of the IBL method made it possible to achieve the required fine resolution in areas of interest. For some roughness geometries and flow conditions, up to 15000 grid points (over 4 million total grid points) were used in the streamwise direction to capture the resulting flow physics, which would still be time restrictive with a full Navier–Stokes algorithm. A number of different small-scale roughness configurations were evaluated including variations of roughness height, wavelength, distribution, and geometry. Results from this work show that small-scale roughness can alter the characteristics of the laminar separation point in low-speed flows.  相似文献   

16.
Large Eddy Simulation of a Controlled Diffusion Compressor Cascade   总被引:1,自引:0,他引:1  
In this research a Controlled Diffusion (CD) compressor cascade stator blade is simulated at a Reynolds number of ??700,000, based on inflow velocity and chord length, using Large Eddy Simulation (LES). A wide range of flow inlet angles are computed, including conditions near the design angle, and at high negative and positive incidence. At all inlet angles the surface pressure distributions are well-predicted by the LES. Near the design angle the computed suction side boundary layer thickness agrees well with experimental data, whilst the pressure side boundary layer is poorly predicted due to the inability of LES to capture natural boundary layer transition on the present grid. A good estimation of the loss is computed near the design angle, whilst at both high positive and negative incidences the loss is less well predicted owing to discrepancies between the computed and experimental boundary layer thickness. At incidences above the design angle a laminar separation bubble forms near the leading edge of the suction surface, which undergoes a transition to turbulence. Similar behaviour is noted on the pressure surface at negative incidence. At high negative incidence contra-rotating vortex pairs are found to form around the leading edge in response to an unsteady stagnation line across the span of the blade. Such structures are not apparent in time-averaged statistical data due to their highly-transient nature.  相似文献   

17.
A study is made of the flow of a compressible gas in a laminar boundary layer on swept-back wings of infinite span in a supersonic gas flow at different angles of attack. The surface is assumed to be either impermeable or that gas is blown or sucked through it. For this flow and an axisymmetric flow an analytic solution to the problem is obtained in the first approximation of an integral method of successive approximation. For large values of the blowing or suction parameters, asymptotic solutions are found for the boundary layer equations. Some results of numerical solution of the problem obtained by the finite-difference method are given for wings of various shapes in a wide range of angles characterizing the amount by which the wings are swept back and also the blowing or suction parameters. A numerical solution is obtained for the equations of the three-dimensional mixing layer formed in the case of strong blowing of gas from the surface of the body. The analytic and numerical solutions are compared and the regions of applicability of the analytic expressions are estimated. On the basis of the solutions obtained in the present paper and studies of other authors a formula is proposed for the calculation of the heat fluxes to a perfectly catalytic surface of swept-back wings in a supersonic flow of dissociated and ionized air at different angles of attack. Flow over swept-back wings at zero angle of attack has been considered earlier (see, for example, [1–4]) in the theory of a laminar boundary layer. In [5], a study was made of flow over swept-back wings at nonzero angle of attack at small and moderate Reynolds numbers in the framework of the theory of a hypersonic viscous shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 27–39, May–June, 1980.We thank G. A. Tirskii for a helpful discussion of the results.  相似文献   

18.
The flow structure behind the separation point of a laminar boundary layer in a supersonic stream has been investigated. Analytic and numerical solutions are obtained for simple semiinfinite separation zones starting from the leading edge or a point on the smooth surface. The question of the pressure plateau in a separation zone of finite length is discussed and its value is calculated on the basis of asymptotic theory. The asymptotic theory of flow [1, 2] in the neighborhood of the separation point of the laminar boundary layer in a supersonic gas stream (region of free interaction) is employed. The local solution obtained is subsequently used to construct the flow pattern in the separation zone [3]. An analysis is made of the behavior of the solution for the free-interaction region on transition to the region of reverse flows. The results make it possible actually to compute (in the first approximation) the pressure in the plateau region after establishing the mathematical significance of this concept, previously introduced on the basis of the experimental results. At the same time relatively simple solutions are obtained for semiinfinite separation zones.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 19–25, May–June, 1971.  相似文献   

19.
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil S809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade.  相似文献   

20.
The problem of the laminar boundary layer formed on the surface of a semiinfinite plate with a perpendicular semi-infinite circular cylinder in a uniform steady incompressible flow normal to the leading edge is considered. Near its sharp edge the plate has a stationary part and, located at a finite distance further downstream, a part of the surface moving downstream at a constant velocity. The first-order boundary layer equations are solved numerically by an implicit finite-difference method. The effect of the moving wall on the variation of the dimensions of the separation zone ahead of the obstacle over a broad range of the governing parameters and flow characteristics is investigated. The flow in the laminar boundary layer on the surface of a plate ahead of such an obstacle was calculated in [1, 2] without motion of the wall. Data on the structure of the separated flow are given in [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 49–53, November–December, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号