首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A gauge principle is applied to mass flows of an ideal compressible fluid subject to Galilei transformation. A free-field Lagrangian defined at the outset is invariant with respeet to global SO(3) gauge transformations as well as Galilei transformations. The action principle leads to the equation of potential flows under constraint of a continuity equation. However, the irrotational flow is not invariant with respect to local SO(3) gauge transformations. According to the gauge principle, a gauge-covariant derivative is defined by introducing a new gauge field. Galilei invariance of the derivative requires the gauge field to coincide with the vorticity, i.e. the curl of the velocity field. A full gauge-covariant variational formulation is proposed on the basis of the Hamilton‘‘s principle and an assoicated Lagrangian. By means of an isentropic material variation taking into account individual particle motion, the Euler‘‘s equation of motion is derived for isentropic flows by using the covariant derivative. Noether‘‘s law associated with global SO(3) gauge invariance leads to the conservation of total angular momentum. In addition, the Lagrangian has a local symmetry of particle permutation which results in local conservation law equivalent to the vorticity equation.  相似文献   

2.
3.
A one-dimensional nonlinear fractional filtration equation with the Riemann–Liouville time-fractional derivative is proposed for modeling fluid flow through a porous medium. This equation is derived under an assumption that the fluid has a fractional equation of state in which the fluid density depends on the time-fractional derivative of pressure. The obtained equation belongs to the diffusion-wave type of equations. A case when the order of fractional differentiation is close to an integer number is considered, and a small parameter is introduced into the fractional filtration equation under consideration. An expansion of the Riemann–Liouville time-fractional derivative into the series with respect to this small parameter is obtained. Using this expansion, a first-order approximation of the derived fractional filtration equation is performed. Next, the problem of approximate Lie point symmetry group classification for this approximate nonlinear filtration equation with a small parameter is studied. It is shown that approximate symmetry groups admitted by different realizations of the approximate filtration equation have much more dimensions than the corresponding exact Lie point symmetry groups admitted by unperturbed fractional diffusion-wave equations. Obtained classification results permit to construct approximate invariant solutions for the considered nonlinear time-fractional filtration equations.  相似文献   

4.
This paper is concerned with the time fractional Sharma–Tasso–Olver (FSTO) equation, Lie point symmetries of the FSTO equation with the Riemann–Liouville derivatives are considered. By using the Lie group analysis method, the invariance properties of the FSTO equation are investigated. In the sense of point symmetry, the vector fields of the FSTO equation are presented. And then, the symmetry reductions are provided. By making use of the obtained Lie point symmetries, it is shown that this equation can transform into a nonlinear ordinary differential equation of fractional order with the new independent variable ξ=xt ?α/3. The derivative is an Erdélyi–Kober derivative depending on a parameter α. At last, by means of the sub-equation method, some exact and explicit solutions to the FSTO equation are given.  相似文献   

5.
In this paper, the (2 + 1)-dimensional cubic generalized Kadomtsev–Petviashvili (CGKP) equation that is derived from the Maxwell–Bloch equations is investigated. By means of Lie symmetry analysis method, we obtain the Lie point symmetries for the equation and the optimal system of the symmetry algebra. Based on the optimal system, a lot of group invariant solutions are obtained. In addition, explicit conservation laws of the equation are studied.  相似文献   

6.
In Hamiltonian theory, Noether's theorem commonly is used to show the conservation of linear momentum and energy as a consequence of symmetry properties. The possibility of enclosing Hamiltonian theory in a wider context by use of Gibbs-Falkian thermodynamical methods, offering the opportunity to cover mechanical and thermodynamical systems with the same mathematical tools, is considered. Consequently it is shown how Noether's identity can be extended for dissipative systems which are appropriate to describe real life phenomena. By use of the principle of least action an extended version of Noether's theorem is calculated, from which the conservation of linear momentum and total energy can be derived. Additionally, the condition of absolute invariance is shown to be too restrictive for physical applications.  相似文献   

7.
Güngör  F.  Winternitz  P. 《Nonlinear dynamics》2004,35(4):381-396
We classify the variable coefficient Kadomtsev—Petviashvili (VCKP) equation into equivalence classes under the group of local point transformations, leaving the equation form invariant but changing the coefficient functions. We list the representatives of all equivalence classes with the corresponding transformations. Then, we obtain the symmetry group of the VCKP equation and in particular discuss how to use these transformations to classify low-dimensional symmetry algebras in the generic case. We conclude with a discussion of the implications of the present article.  相似文献   

8.
By symbolic computation we study a variable-coefficient derivative nonlinear Schrödinger (vc-DNLS) equation describing nonlinear Alfvén waves in inhomogeneous plasmas. Based on the Lax pair of the vc-DNLS equation, the N-fold Darboux transformation is constructed via a gauge transformation and the reduction technique. Multi-solitonic solutions in terms of the double Wronskian for the vc-DNLS equation are obtained. Two- and three-solitonic interactions are analyzed graphically, i.e., overtaking, head-on and parallel interactions. Plasma streaming and inhomogeneous magnetic field control the amplitudes and velocities of the solitonic waves, respectively. The nonuniform density affects the amplitudes of the solitonic waves. The effects of the spectral parameters on the dynamics of the two-solitonic waves are discussed. Our results might facilitate the analytic investigation on certain inhomogeneous systems in the Earth’s magnetosphere, solar winds, planetary bow shocks, dusty cometary tails and interplanetary shocks.  相似文献   

9.
In this paper, a general framework of continuum theory for a growing deformable body is established. Firstly, the so-called material accretion derivative is defined. Based on this definition, a general form of the equilibrium equation and its growing boundary condition describing motion of the growing deformable body are deduced in detail. From the process of deduction, the concept of coupling function of growth is derived, which reflects the influence of the accretive boundary surface. Then, the equilibrium equations, including the equation of mass, momentum, moment of momentum and energy, are discussed. Also, the entropy inequality is given according to the assumption of local equilibrium of non-equilibrium thermodynamics. In the meantime, the related constitutive equations are deduced. All these equations constitute a group of closed equations characterizing the growth and motion of the body.  相似文献   

10.
A THEORY OF CLASSICAL SPACETIME (I)—FOUNDATIONS   总被引:1,自引:1,他引:0  
Despite its beauty and grandeur the theory of GR still appears to be incomplete in thefollowing ways:(1)It cannot accommodate the asymmetric total energy momentum tensor whoseasymmetry has been shown to exist in the presence of electromagnetism.(2)The law of angular momentum balance as an exact equation is not an automaticconsequence of the field equations as is the case with the law of linear momentum balance.(3)The four degrees of arbitrariness left by the contracted second Bianchi identitymakes a unique solution of the field equations unattainable without extra (unphysical)postulates.To answer the challenge posed by the above assertions we propose in this paper tocomplete Einstein’s theory by postulating the principle fibre bundle P[M,SU(2)]for theunderlying geometry of the 4-dimensional spacetime,where the structre group SU (2) isthe real representation of the special complex unitary group of dimension 2. SU (2) leavesconcurrently invariant the metric form dS~2=g_(αβ)dx~αdx~β and the fundamenta  相似文献   

11.
The focus of this paper is on the investigation of the mathematical nature of buckling from the point of view of bifurcation theory. For the doubly curved orthotropic panels subjected to quasi-static uniform load and with hinged boundary conditions, the solution to the non-linear partial differential equation is partitioned into two parts and projected onto the complete space spanned by the eigenfunctions of the linear operator of the governing equation. Furthermore, the fundamental branch, from which a new solution will emanate, is approximated by the first single mode pair which is close to the real membrane state. Whereas the ensuing bifurcated branch is approximated by the other single mode pair, under the assumption that the coupling between modes can be neglected. The present analysis could give a deep insight into the mechanism of the instability of panel structures, and show that there exists a mode transition at the critical point and the snap-through, then results from saddle-node bifurcation on the bifurcated branch. As a conclusion, the buckling of the system studied can be stated as: a bifurcated branch emanates from the fundamental branch at a critical point, and a saddle-node bifurcation, behaving as jumping, then occurs on the ensuing bifurcated branch.  相似文献   

12.
We study the dynamics of a simple system with backlash and impacts. Both the presence or the absence of fluid friction is considered. The fluid friction is modeled by a fractional derivative, but it is also shown how an inhomogeneous time scale, although not arising from a fractional differential equation, may lead to some features similar to fractional solutions.  相似文献   

13.
The solution of a class of third order ordinary differential equations possessing two parameter Lie symmetry group is obtained by group theoretic means. It is shown that reduction to quadratures is possible according to two scenarios: (1) if upon first reduction of order the obtained second order ordinary differential equation besides the inherited point symmetry acquires at least one more new point symmetry (possibly a hidden symmetry of Type II). (2) First, reduction paths of the fourth order differential equations with four parameter symmetry group leading to the first order equation possessing one known (inherited) symmetry are constructed. Then, reduction paths along which a third order equation possessing two-parameter symmetry group appears are singled out and followed until a first order equation possessing one known (inherited) symmetry are obtained. The method uses conditions for preservation, disappearance and reappearance of point symmetries.  相似文献   

14.
Fractional differential equations are more and more used in modeling memory(history-dependent,nonlocal,or hereditary) phenomena.Conventional initial values of fractional differential equations are define at a point,while recent works defin initial conditions over histories.We prove that the conventional initialization of fractional differential equations with a Riemann–Liouville derivative is wrong with a simple counter-example.The initial values were assumed to be arbitrarily given for a typical fractional differential equation,but we fin one of these values can only be zero.We show that fractional differential equations are of infinit dimensions,and the initial conditions,initial histories,are define as functions over intervals.We obtain the equivalent integral equation for Caputo case.With a simple fractional model of materials,we illustrate that the recovery behavior is correct with the initial creep history,but is wrong with initial values at the starting point of the recovery.We demonstrate the application of initial history by solving a forced fractional Lorenz system numerically.  相似文献   

15.
We revisit the derivation of the microscopic stress, linking the statistical mechanics of particle systems and continuum mechanics. The starting point in our geometric derivation is the Doyle–Ericksen formula, which states that the Cauchy stress tensor is the derivative of the free-energy with respect to the ambient metric tensor and which follows from a covariance argument. Thus, our approach to define the microscopic stress tensor does not rely on the statement of balance of linear momentum as in the classical Irving–Kirkwood–Noll approach. Nevertheless, the resulting stress tensor satisfies balance of linear and angular momentum. Furthermore, our approach removes the ambiguity in the definition of the microscopic stress in the presence of multibody interactions by naturally suggesting a canonical and physically motivated force decomposition into pairwise terms, a key ingredient in this theory. As a result, our approach provides objective expressions to compute a microscopic stress for a system in equilibrium and for force-fields expanded into multibody interactions of arbitrarily high order. We illustrate the proposed methodology with molecular dynamics simulations of a fibrous protein using a force-field involving up to 5-body interactions.  相似文献   

16.
This paper describes the solution of a steady state natural convection problem in porous media by the dual reciprocity boundary element method (DRBEM). The boundary element method (BEM) for the coupled set of mass, momentum, and energy equations in two dimensions is structured by the fundamental solution of the Laplace equation. The dual reciprocity method is based on augmented scaled thin plate splines. Numerical examples include convergence studies with different mesh size, uniform and non‐uniform mesh arrangement, and constant and linear boundary field discretizations for differentially heated rectangular cavity problems at filtration with Rayleigh numbers of Ra*=25, 50, and 100 and aspect ratios of A=1/2, 1, and 2. The solution is assessed by comparison with reference results of the fine mesh finite volume method (FVM). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
A model equation for the mean concentration of a passive scalar quantity in inhomogeneous turbulence is used to derive an expression for the turbulent transport in the case of large diffusion times. The expression obtained consists of three terms: a gradient-type transport term, a convective term, and a term proportional to the material derivative of the mean concentration. The theory is in agreement with observed concentration distributions in a wall layer.  相似文献   

18.
介质参数反演的广义射线近似方法   总被引:2,自引:0,他引:2  
在对无粘性介质参数反演问题进行的研究中,引入一种全波场广义射线近似形式,提出一种新的反演参数的方法,文中,首先对由弹性波动方程演变成的声波方程进行分析,引入背景场量和扰动量,并结合Green函数理论,得到了介质参数的积分方程;然后结合前人对非均匀介质中波函数局部理论的定性分析,引入一种全波场广度射线近似形式,把问题归结为一个第一类Fredholm积分方程;最后对半空间问题层状介质模型进行了反演,算  相似文献   

19.
轴对称正交异性圆环壳的齐次完全渐近解   总被引:1,自引:0,他引:1  
承受轴对称载荷的正交异性圆环壳的静力分析,归结为求解一非齐次二阶复变量方程.当所含参数μ较大时,常采用渐近解法.因方程含一阶转点,所以求全域一致有效且达到薄壳理论精度的完全渐近解较为困难.过去,齐次解只求到一级近似.本文采用广义Airy函数方法,求出了高级近似.这样,轴对称正交异性圆环壳的齐次解第一次有了达到薄壳理论精度的完全的渐近展开.  相似文献   

20.
The transient one-dimensional Burgers equation is solved by a mixed formulation of the Green element method (GEM) which is based essentially on the singular integral theory of the boundary element method (BEM). The GEM employs the fundamental solution of the term with the highest derivative to construct a system of discrete first-order non- linear equations in terms of the primary variable, the velocity, and its spatial derivative which are solved by a two-level generalized and a modified time discretization scheme and by the Newton–Raphson algorithm. We found that the two-level scheme with a weight of 0ċ67 and the modified fully implicit scheme with a weight of 1ċ5 offered some marginal gains in accuracy. Three numerical examples which cover a wide range of flow regimes are used to demonstrate the capabilities of the present formulation. Improvement of the present formulation over an earlier BE formulation which uses a linearized operator of the differential equation is demonstrated. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号