首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
2.
An experimental investigation of the Portevin–Le Chatelier (PLC) effect in the aluminium alloy AA5083-H116 is undertaken in this study through five different tests involving round, prismatic and flat notched specimen geometries. Measurements based on strain gages and digital image correlation (DIC) are used to capture and characterize the spatio-temporal features of the PLC behaviour. Inhomogeneous deformation with various localization bands caused by the PLC effect is observed in all tests, and the band characteristics are measured. The McCormick elastic–viscoplastic constitutive relation, developed for metals exhibiting this type of dynamic strain aging, is then described in detail, before the various parameters required by the model are determined based on available material tests. The model is finally used in full-scale 3D numerical simulations of the physical tests using the explicit solver of the non-linear finite element code LS-DYNA. It will be shown that the numerical results are able to reproduce most of the experimentally observed phenomena with reasonable accuracy. However, if the model is used to study the micromechanical mechanisms controlling the macromechanical behaviour of materials exhibiting PLC effects (such as the band morphology), more advanced constitutive relations may be required.  相似文献   

3.
The development of macroscopic inhomogeneities in the form of Chernov–Luders bands and serrated deformation bands (Portevin–Le Chatelier effect) in plastic metal flow is studied. For these two cases, regularities in the development of deformation inhomogeneity were established and the kinetics of motion of the fronts of Chernov–Luders bands and serrated deformation bands was studied. It is shown that the Chernov–Luders fronts and the serrated Portevin–Le Chatelier deformation can be considered as macroscopic autowave switching and excitation processes, respectively, in deformable media of different nature.  相似文献   

4.
This paper presents experimental tensile test results obtained on flat aluminum magnesium alloy samples on a hard machine. The mechanical response, kinematic fields and acoustic emissions were simultaneously obtained in an experimental setup. Propagation instabilities associated with the Portevin–Le-Chatelier effect were observed as localized intense strain increment bands. Depending on the strain rate, A, B or C types were studied on the basis of stress drops, acoustic emission and strain fields. Then the band characteristics (position, orientation, width, thickness reduction, intensity, acoustic emission, principal strain direction) were presented in various strain rate conditions.  相似文献   

5.
Deformation behavior of a coarse-grained AZ31 magnesium alloy was investigated at elevated temperatures using commercial rolled sheet. The as-received material had equiaxed grains with an average grain size of 130 μm. The tensile tests revealed that the material exhibited high ductility of 196% at 648 K and 3×10−5 s−1. Stress exponent, grain size exponent and activation energy were characterized to clarify the deformation mechanism. It was suggested from the data analysis that the high ductility was attributed to the deformation mechanism of glide-controlled dislocation creep. In addition, constitutive equation was developed for the present alloy.  相似文献   

6.
The paper examines the plastic bending of steel tubes exhibiting Lüders bands through a combination of experiments and analyses. In pure bending experiments on tubes with diameter-to-thickness ratio of 18.8 tested under end-rotation control, following the elastic regime the moment initially traced a somewhat ragged plateau. At the beginning of the plateau Lüders bands appeared on the tension and compression sides of the cross section and simultaneously the curvature localized in one or two short zones while the rest of the tube maintained a much lower curvature. As the rotation of the ends was increased, one of the higher curvature zones spread at a nearly steady rate, affecting an increasingly larger part of the tube. When the whole tube was deformed to the higher curvature, the moment started to gradually increase while the tube deformed uniformly. A moment maximum was eventually attained and the structure failed by localized diffuse ovalization without any apparent effect from the initial Lüders bands-induced propagating instability. The problem was analyzed using 3D finite elements with a fine mesh. The material was modeled as an elastic–plastic solid with an up–down–up response over the extent of the Lüders strain, followed by hardening. The calculated response reproduced all major structural events observed experimentally including the initiation of the Lüders deformation, the moment plateau that followed, its extent, and the curvature localization and propagation associated with it. As in the experiments, once the high curvature extended over the whole tube length, the response of the tube became stable and the curvature uniform. With further bending the increasing ovalization induced a limit moment at a very high curvature.  相似文献   

7.
An experimental analysis of orthogonal cutting of a Ti–6Al–4V alloy is proposed. Cutting speeds are explored in a range from 0.01 to 73 m/s by using an universal high-speed testing machine and a ballistic set-up. The evolution of the cutting force in terms of the cutting speed and the development of adiabatic shear banding are analyzed. The shear band width and the distance between bands have been determined by micrographic observations. Their dependence upon the cutting velocity is analyzed. A modeling is proposed which restitutes well this velocity dependence.  相似文献   

8.
Superplastic properties at 818 K were investigated by tensile tests for Al–Mg–Si alloy composites reinforced with Si3N4 whiskers whose volume fractions were 0–30%. The 20 and 30 vol.% composites exhibited large elongation of 615 and 285% at a high strain rate of 2×10−1 s−1, respectively. High strain rate superplasticity of the composites is attributed to the very small grain size of less than 3 μm. The stress–strain rate relation for the composites was almost the same as that of the alloy, taking into consideration the influences of threshold stress and grain size, and the relation was independent of the volume fraction of whisker. This is probably because grain boundary sliding was not hampered by the whiskers due to the presence of liquid phase for the composites.  相似文献   

9.
10.
The phenomenon of adiabatic shear banding is analyzed theoretically in the context of metal cutting. The mechanisms of material weakening that are accounted for are (i) thermal softening and (ii) material failure related to a critical value of the accumulated plastic strain. Orthogonal cutting is viewed as a unique configuration where adiabatic shear bands can be experimentally produced under well controlled loading conditions by individually tuning the cutting speed, the feed (uncut chip thickness) and the tool geometry. The role of cutting conditions on adiabatic shear banding and chip serration is investigated by combining finite element calculations and analytical modeling. This leads to the characterization and classification of different regimes of shear banding and the determination of scaling laws which involve dimensionless parameters representative of thermal and inertia effects. The analysis gives new insights into the physical aspects of plastic flow instability in chip formation. The originality with respect to classical works on adiabatic shear banding stems from the various facets of cutting conditions that influence shear banding and from the specific role exercised by convective flow on the evolution of shear bands. Shear bands are generated at the tool tip and propagate towards the chip free surface. They grow within the chip formation region while being convected away by chip flow. It is shown that important changes in the mechanism of shear banding take place when the characteristic time of shear band propagation becomes equal to a characteristic convection time. Application to Ti–6Al–4V titanium are considered and theoretical predictions are compared to available experimental data in a wide range of cutting speeds and feeds. The fundamental knowledge developed in this work is thought to be useful not only for the understanding of metal cutting processes but also, by analogy, to similar problems where convective flow is also interfering with adiabatic shear banding as in impact mechanics and perforation processes. In that perspective, cutting speeds higher than those usually encountered in machining operations have been also explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号