首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
基于平均场理论的多尺度模拟关键问题之一是给定恰当的表征元(RVE)边界条件,以使均匀化过程满足Hill-Mandel细宏观能量等价条件,也即Hill宏观均匀化条件。对于非均质Cosserat连续体,已有的研究工作只能得到合理的混合平动位移-偶应力表征元边界条件,常用的一致平动位移-转角以及周期边界条件等均不能使用,给计算均匀化算法推导和实施带来了困难,也阻碍了多尺度分析方法的进一步发展与应用。为此,本文在推导和建立一个新的Hill定理版本基础上,不仅成功地给定了多种强形式表征元边界条件,而且构造出了合理的弱形式周期边界条件,这些条件既满足细宏观能量等价也符合一阶平均场理论基本假定,可在均匀化方法中推广与应用。  相似文献   

3.
Andrea Bacigalupo 《Meccanica》2014,49(6):1407-1425
In this paper a second-order homogenization approach for periodic material is derived from an appropriate representation of the down-scaling that correlates the micro-displacement field to the macro-displacement field and the macro-strain tensors involving unknown perturbation functions. These functions take into account of the effects of the heterogeneities and are obtained by the solution of properly defined recursive cell problems. Moreover, the perturbation functions and therefore the micro-displacement fields result to be sufficiently regular to guarantee the anti-periodicity of the traction on the periodic unit cell. A generalization of the macro-homogeneity condition is obtained through an asymptotic expansion of the mean strain energy at the micro-scale in terms of the microstructural characteristic size ?; the obtained overall elastic moduli result to be not affected by the choice of periodic cell. The coupling between the macro- and micro-stress tensor in the periodic cell is deduced from an application of the generalised macro-homogeneity condition applied to a representative portion of the heterogeneous material (cluster of periodic cell). The correlation between the proposed asymptotic homogenization approach and the computational second-order homogenization methods (which are based on the so called quadratic ansätze) is obtained through an approximation of the macro-displacement field based on a second-order Taylor expansion. The form of the overall elastic moduli obtained through the two homogenization approaches, here proposed, is analyzed and the differences are highlighted. An evaluation of the developed method in comparison with other recently proposed in literature is carried out in the example where a three-phase orthotropic material is considered. The characteristic lengths of the second-order equivalent continuum are obtained by both the asymptotic and the computational procedures here analyzed. The reliability of the proposed approach is evaluated for the case of shear and extensional deformation of the considered two-dimensional infinite elastic medium subjected to periodic body forces; the results from the second-order model are compared with those of the heterogeneous continuum.  相似文献   

4.
The paper deals with the problem of the determination of the in-plane behavior of periodic masonry material. The macromechanical equivalent Cosserat medium, which naturally accounts for the absolute size of the constituents, is derived by a rational homogenization procedure based on the Transformation Field Analysis. The micromechanical analysis is developed considering a Cauchy model for masonry components. In particular, a linear elastic constitutive relationship is considered for the blocks, while a nonlinear constitutive law is adopted for the mortar joints, accounting for the damage and friction phenomena occurring during the loading history. Some numerical applications are performed on a Representative Volume Element characterized by a selected commonly used texture, without performing at this stage structural analyses. A comparison between the results obtained adopting the proposed procedure and a nonlinear micromechanical Finite Element Analysis is presented. Moreover, the substantial differences in the nonlinear behavior of the homogenized Cosserat material model with respect to the classical Cauchy one, are illustrated.  相似文献   

5.
In this paper, we develop a model of a homogenized fluid-saturated deformable porous medium. To account for the double porosity the Biot model is considered at the mesoscale with a scale-dependent permeability in compartments representing the second-level porosity. This model is treated by the homogenization procedure based on the asymptotic analysis of periodic “microstructure”. When passing to the limit, auxiliary microscopic problems are introduced, which provide the corrector basis functions that are needed to compute the effective material parameters. The macroscopic problem describes the deformation-induced Darcy flow in the primary porosities whereas the microflow in the double porosity is responsible for the fading memory effects via the macroscopic poro-visco-elastic constitutive law. For the homogenization procedure, we use the periodic unfolding method. We discuss also the stress and flow recovery at multiple scales characterizing the heterogeneous material. The model is proposed as a theoretical basis to describe compact bone behavior on multiple scales.  相似文献   

6.
The paper deals with the homogenization of a boundary value problem for an inhomogeneous body with Cosserat properties, which is referred to as the original problem. The homogenization process is understood as a method for representing the solution of the original problem in terms of the solution of precisely the same problem for a body with homogeneous properties. The problem for a body with homogeneous properties is called the accompanying problem, and the body itself, the accompanying homogeneous body. As a rule, a constructive homogenization procedure includes the following three stages: at the first stage, the properties of the inhomogeneous body are used to find the properties of the accompanying homogeneous body (efficient properties); at the second stage, the boundary value problem is solved for the accompanying body; at the third stage, the solution of the accompanying problem is used to find the solution of the original problem. This approach was implemented in mechanics of composite materials constructed of numerous representative elements. A significant contribution to the development of mechanics of composites is due to Rabotnov [1–3] and his students. Recently, the homogenization method has been widely used to solve problems for composites of regular structure by expanding the solution of the original problem in a power series in a small geometric parameter equal to the ratio of the characteristic dimension of the periodicity cell to the characteristic dimension of the entire body. The papers by Bakhvalov [4–6] and Pobedrya [7] were the first in the field. At present, there are numerous monographs partially or completely dealing with the method of a small geometric parameter [8–14]. Isolated problems for inhomogeneous bodies with nonperiodic dependence of their properties on the coordinates were considered by many authors. Most of such papers published before 1973 are collected in two vast bibliographic indices [15, 16]. General methods were considered, and many specific problems of the theory of elasticity of continuously inhomogeneous bodies were solved in Lomakin’s papers and his monograph [17]. The theory of torsion of inhomogeneous anisotropic rods was considered in [18]. In 1991, in his Doctoral dissertation, one of the authors of this paper proposed a version of the homogenization method based on an integral formula representing the solution of the original static problem of inhomogeneous elasticity via the solution of the accompanying problem [19, 20]. An integral formula for the dynamic problem of elasticity was published somewhat later [21]. This integral formula was used to develop a constructive method for the homogenization of the dynamic problem of inhomogeneous elasticity, which can be used in the case of both periodic and nonperiodic inhomogeneity of the properties [22]. The integral formula in the case of the Cosserat theory of elasticity was published in [23]. The present paper briefly presents constructive methods for homogenizing the problems of the Cosserat theory of elasticity based on the integral formula.  相似文献   

7.
Conceived as an alternative method to deal with highly heterogeneous composite structures, the homogenization approach developed in this paper is devoted to the formulation of the thermoviscoelastic behavior at the macroscopic level. Attention is focused on composites involving ageing constituents. The concept of strain localization tensor is extended and the memory effects induced by the homogenization process are discussed. The case of multilayered thermoviscoelastic media is examined in the last part of the paper. Taking into account local anisotropic behavior as well as ageing, an explicit formulation is derived for the macroscopic relaxation moduli. An illustrative example is presented where the memory effects are quantified in terms of relaxation times.  相似文献   

8.
The Cosserat model generalises an elastic material taking into account the possible microstructure of the elements of the material continuum. In particular, within the Cosserat model the structured material point is rigid and can only experience microrotations, which is also known as micropolar elasticity. We present the geometrically nonlinear theory taking into account all possible interaction terms between the elastic and microelastic structures. This is achieved by considering the irreducible pieces of the deformation gradient and of the dislocation curvature tensor. In addition we also consider the so-called Cosserat coupling term. In this setting we seek soliton type solutions assuming small elastic displacements, however, we allow the material points to experience full rotations which are not assumed to be small. By choosing a particular ansatz we are able to reduce the system of equations to a sine–Gordon type equation which is known to have soliton solutions.  相似文献   

9.
It is shown that second-order homogenization of a Cauchy-elastic dilute suspension of randomly distributed inclusions yields an equivalent second gradient (Mindlin) elastic material. This result is valid for both plane and three-dimensional problems and extends earlier findings by Bigoni and Drugan [Bigoni, D., Drugan, W.J., 2007. Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74, 741–753] from several points of view: (i) the result holds for anisotropic phases with spherical or circular ellipsoid of inertia; (ii) the displacement boundary conditions considered in the homogenization procedure is independent of the characteristics of the material; (iii) a perfect energy match is found between heterogeneous and equivalent materials (instead of an optimal bound). The constitutive higher-order tensor defining the equivalent Mindlin solid is given in a surprisingly simple formula. Applications, treatment of material symmetries and positive definiteness of the effective higher-order constitutive tensor are deferred to Part II of the present article.  相似文献   

10.
A multi-scale model for the structural analysis of the in-plane response of masonry panels, characterized by periodic arrangement of bricks and mortar, is presented. The model is based on the use of two scales: at the macroscopic level the Cosserat micropolar continuum is adopted, while at the microscopic scale the classical Cauchy medium is employed. A nonlinear constitutive law is introduced at the microscopic level, which includes damage, friction, crushing and unilateral contact effects for the mortar joints. The nonlinear homogenization is performed employing the Transformation Field Analysis (TFA) technique, properly extended to the macroscopic Cosserat continuum. A numerical procedure is developed and implemented in a Finite Element (FE) code in order to analyze some interesting structural problems. In particular, four numerical applications are presented: the first one analyzes the response of the masonry Representative Volume Element (RVE) subjected to a cyclic loading history; in the other three applications, a comparison between the numerically evaluated response and the micromechanical or experimental one is performed for some masonry panels.  相似文献   

11.
Based on the Hill’s lemma for classical Cauchy continuum, a generalized Hill’s lemma for micro-macro homogenization modeling of heterogeneous gradient-enhanced Cosserat continuum is presented in the frame of the average-field theory. In this context not only the strain and stress tensors defined in classical Cosserat continuum but also their gradients at each macroscopic sampling point are attributed to associated microstructural representative volume element (RVE). The admissible boundary conditions required to prescribe on the RVE for the modeling are extracted as a corollary of the presented generalized Hill’s lemma and discussed to ensure the satisfaction of the enhanced Hill–Mandel energy condition and the average-field theory.  相似文献   

12.
Recent years have seen considerable research success in the field of dynamic homogenization which seeks to define frequency dependent effective properties for heterogeneous composites for the purpose of studying wave propagation. There is an approximation involved in replacing a heterogeneous composite with its homogenized equivalent. In this paper we propose a quantification to this approximation. We study the problem of reflection at the interface of a layered periodic composite and its dynamic homogenized equivalent. It is shown that if the homogenized parameters are to appropriately represent the layered composite in a finite setting and at a given frequency, then reflection at this special interface must be close to zero at that frequency. We show that a comprehensive homogenization scheme proposed in an earlier paper results in negligible reflection in the low frequency regime, thereby suggesting its applicability in a finite composite setting. In this paper we explicitly study a 2-phase composite and a 3-phase composite which exhibits negative effective properties over its second branch. We show that based upon the reflected energy profile of the two cases, there exist good arguments for considering the second branch of a 3-phase composite a true negative branch with negative group velocity. Through arguments of calculated reflected energy we note that infinite-domain homogenization is much more applicable to finite cases of the 3-phase composite than it is to the 2-phase composite. In fact, the applicability of dynamic homogenization extends to most of the first branch (negligible reflection) for the 3-phase composite. This is in contrast with a periodic composite without local resonance where the approximation of homogenization worsens with increasing frequency over the first branch and is demonstrably bad on the second branch. We also study the effect of the interface location on the applicability of homogenization. The results open intriguing questions regarding the effects of replacing a semi-infinite periodic composite with its Bloch-wave (infinite domain) dynamic properties on such phenomenon as negative refraction.  相似文献   

13.
A micromechanics-based approach for the derivation of the effective properties of periodic linear elastic composites which exhibit strain gradient effects at the macroscopic level is presented. At the local scale, all phases of the composite obey the classic equations of three-dimensional elasticity, but, since the assumption of strict separation of scales is not verified, the macroscopic behavior is described by the equations of strain gradient elasticity. The methodology uses the series expansions at the local scale, for which higher-order terms, (which are generally neglected in standard homogenization framework) are kept, in order to take into account the microstructural effects. An energy based micro–macro transition is then proposed for upscaling and constitutes, in fact, a generalization of the Hill–Mandel lemma to the case of higher-order homogenization problems. The constitutive relations and the definitions for higher-order elasticity tensors are retrieved by means of the “state law” associated to the derived macroscopic potential. As an illustration purpose, we derive the closed-form expressions for the components of the gradient elasticity tensors in the particular case of a stratified periodic composite. For handling the problems with an arbitrary microstructure, a FFT-based computational iterative scheme is proposed in the last part of the paper. Its efficiency is shown in the particular case of composites reinforced by long fibers.  相似文献   

14.
The role of Professor Pobedrya in the development of the homogenization method in the mechanics of composite materials with periodic structure is discussed. A generalization of the homogenization method is proposed to the case of heterogeneous bodies whose structure is not periodic.  相似文献   

15.
This paper describes a new procedure for the homogenization of orthotropic 3D periodic plates. The theory of Caillerie [Caillerie, D., 1984. Thin elastic and periodic plates. Math. Method Appl. Sci., 6, 159–191.] – which leads to a homogeneous Love–Kirchhoff model – is extended in order to take into account the shear effects for thick plates. A homogenized Reissner–Mindlin plate model is proposed. Hence, the determination of the shear constants requires the resolution of an auxiliary 3D boundary value problem on the unit cell that generates the periodic plate. This homogenization procedure is then applied to periodic brickwork panels.A Love–Kirchhoff plate model for linear elastic periodic brickwork has been already proposed by Cecchi and Sab [Cecchi, A., Sab, K., 2002b. Out-of-plane model for heterogeneous periodic materials: the case of masonry. Eur. J. Mech. A-Solids 21, 249–268 ; Cecchi, A., Sab, K., 2006. Corrigendum to A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork [Int. J. Solids Struct., vol. 41/9–10, pp. 2259–2276], Int. J. Solids Struct., vol. 43/2, pp. 390–392.]. The identification of a Reissner–Mindlin homogenized plate model for infinitely rigid blocks connected by elastic interfaces (the mortar thin joints) has been also developed by the authors Cecchi and Sab [Cecchi A., Sab K., 2004. A comparison between a 3D discrete model and two homogenised plate models for periodic elastic brickwork. Int. J. Solids Struct. 41/9–10, 2259–2276.]. In that case, the identification between the 3D block discrete model and the 2D plate model is based on an identification at the order 1 in the rigid body displacement and at the order 0 in the rigid body rotation.In the present paper, the new identification procedure is implemented taking into account the shear effect when the blocks are deformable bodies. It is proved that the proposed procedure is consistent with the one already used by the authors for rigid blocks. Besides, an analytical approximation for the homogenized shear constants is derived. A finite elements model is then used to evaluate the exact shear homogenized constants and to compare them with the approximated one. Excellent agreement is found. Finally, a structural experimentation is carried out in the case of masonry panel under cylindrical bending conditions. Here, the full 3D finite elements heterogeneous model is compared to the corresponding 2D Reissner–Mindlin and Love–Kirchhoff plate models so as to study the discrepancy between these three models as a function of the length-to-thickness ratio (slenderness) of the panel. It is shown that the proposed Reissner–Mindlin model best fits with the finite elements model.  相似文献   

16.
This paper presents an investigation of the macroscopic mechanical behavior of highly concentrated fiber suspensions for which the mechanical behavior is governed by local fiber-fiber interactions.The problem is approached by considering the case of a net of rigid fibers of uniform length, linked by viscous point interactions of power-law type. Those interactions may result in local forces and moments located at the contacting point between two fibers, and respectively power-law functions of the local linear and angular velocity at this point.Assuming the existence of an elementary representative volume which size is small compared to the size of the whole structure, the fiber net is regarded as a periodic assembly of identical cells. Macroscopic equilibrium and constitutive equations of the equivalent continuum are then obtained by the discrete and periodic media homogenization method, based on the use of asymptotic expansions.Depending on the order of magnitude of local translational viscosities and rotational viscosities, three types of the equivalent continua are proved to be possible. One of them leads to an effective Cosserat medium, the other ones being usual Cauchy media. Lastly, formulations that enable an effective computation of constitutive equations are detailed. They show that the equivalent continuum behaves like an anisotropic power-law fluid.  相似文献   

17.
Discrete fine-scale models, in the form of either particle or lattice models, have been formulated successfully to simulate the behavior of quasi-brittle materials whose mechanical behavior is inherently connected to fracture processes occurring in the internal heterogeneous structure. These models tend to be intensive from the computational point of view as they adopt an “a priori” discretization anchored to the major material heterogeneities (e.g. grains in particulate materials and aggregate pieces in cementitious composites) and this hampers their use in the numerical simulations of large systems. In this work, this problem is addressed by formulating a general multiple scale computational framework based on classical asymptotic analysis and that (1) is applicable to any discrete model with rotational degrees of freedom; and (2) gives rise to an equivalent Cosserat continuum. The developed theory is applied to the upscaling of the Lattice Discrete Particle Model (LDPM), a recently formulated discrete model for concrete and other quasi-brittle materials, and the properties of the homogenized model are analyzed thoroughly in both the elastic and the inelastic regime. The analysis shows that the homogenized micropolar elastic properties are size-dependent, and they are functions of the RVE size and the size of the material heterogeneity. Furthermore, the analysis of the homogenized inelastic behavior highlights issues associated with the homogenization of fine-scale models featuring strain-softening and the related damage localization. Finally, nonlinear simulations of the RVE behavior subject to curvature components causing bending and torsional effects demonstrate, contrarily to typical Cosserat formulations, a significant coupling between the homogenized stress–strain and couple-curvature constitutive equations.  相似文献   

18.
In this article, we consider a two-phase flow model in a heterogeneous porous column. The medium consists of many homogeneous layers that are perpendicular to the flow direction and have a periodic structure resulting in a one-dimensional flow. Trapping may occur at the interface between a coarse and a fine layer. Assuming that capillary effects caused by the surface tension are in balance with the viscous effects, we apply the homogenization approach to derive an effective (upscaled) model. Numerical experiments show a good agreement between the effective solution and the averaged solution taking into account the detailed microstructure.  相似文献   

19.
A Micromechanics-Based Approach to the Failure of Saturated Porous Media   总被引:1,自引:0,他引:1  
  相似文献   

20.
The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolves, it is demonstrated to develop computational multiscale methods using discrete particle assembly-Cosserat continuum modeling in micro- and macro- scales, respectively. The computational homogenization method and the bridge scale method along the concurrent scale linking approach are briefly introduced. Based on the weak form of the Hu-Washizu variational principle, the mixed finite element procedure of gradient Cosserat continuum in the frame of the second-order homogenization scheme is developed. The meso-mechanically informed anisotropic damage of effective Cosserat continuum is characterized and identified and the microscopic mechanisms of macroscopic damage phenomenon are revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号