共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
锂硫电池具有理论比容量高(1675 m Ah·g~(-1))、能量密度高(2600 Wh·kg~(-1))、环境友好、价格低廉等性质,是一种高性能的新型储能电池。这些性能使其在电动汽车和便携式设备领域具有重要意义。然而,快速的容量衰减以及较差的循环性能,使锂硫电池还达不到商业应用的要求。本文全面总结了锂硫电池的最新研究进展,详细阐述了锂硫电池的正极、电解质、隔膜以及负极保护,分析了现有锂硫电池存在的缺陷和问题。最后,对锂硫电池未来的发展方向进行了展望。 相似文献
5.
锂硫电池具有远超锂离子电池的高理论比容量(1675 mAh ·g-1),并且兼具硫资源丰富、生产成本低廉以及环境友好等优势。然而,多硫离子的穿梭效应造成金属锂负极钝化、引起电池容量和库仑效率下降、循环稳定性变差等严重问题,限制锂硫电池的实际应用。从正极和负极之间的隔膜层出发,引入多硫离子穿梭的阻挡层被认为是极为有效的研究策略。这些研究策略在缓解多硫离子穿梭、提高活性物质利用效率、延长循环寿命和循环稳定性方面具有显著效果。本文分类综述了近年来锂硫电池隔膜功能化的研究进展,并对未来隔膜功能化的研究趋势进行了预测。 相似文献
6.
正随着人类社会的迅速发展,能源和环境问题逐渐成为人们关注的焦点.化石燃料的过度依赖和使用所导致的全球变暖和环境污染日趋严重,国内大范围高频率的雾霾天气引起了民众的广泛担心,迫切要求加快能源技术创新,建设清洁低碳、安全高效的新能源体系.风能、太阳能和潮汐能等清洁可再生能源在空间和时间上分布不均,电化学储能是实现其广泛应用的关键环节.以锂离子电池为代表的二次电池技术一经出现就在数码产品等移动电源市场占据了主导地 相似文献
7.
以单质硫为正极的锂硫电池表现出极高的放电比容量(1672 mAh·g-1),是极具潜力的下一代二次动力电池。然而,充放电过程中溶解的高阶多硫化锂(Li2Sn,4≤n≤8)的穿梭效应,以及硫物种缓慢的氧化还原动力学过程是锂硫电池商业应用前需要解决的关键问题。而电化学催化的引入是解决上述问题行之有效的策略。本文从电化学催化角度出发,重新讨论认识多硫化物的存在形式,并从吸附-催化、活性中间体两个方面,根据不同的反应机理、路径分析多硫化物转化机制,总结定量评价催化性能方法,以期为锂硫电池高效电催化剂的设计提供思路。 相似文献
8.
锂硫电池是以锂为负极,单质硫为正极的二次电池,具有高达1675 mA·h/g的比容量及2600 W·h/kg的比能量密度。理论上讲,相较于现有的锂离子电池,锂硫电池可使容量扩展5倍,这使其成为最有前景的锂离子电池。由于硫正极的绝缘性以及充放电过程中活性物质易溶于电解液,导致其可实现的能量密度远低于理论值。异原子掺杂石墨烯因具有优异的导电性,且对多硫化锂(LiPS)具有强的吸附作用而被广泛应用于锂硫电池,有效缓解了"穿梭效应",提高了电池的循环稳定性。本文主要从单原子掺杂、双原子掺杂两方面综述了异原子(如N,P,S,B)掺杂石墨烯在锂硫电池领域的研究现状,详细分析了其应用于锂硫电池的作用机理,并从掺杂量、掺杂形式、掺杂位置等方面对电池性能的提升进行了梳理和展望。 相似文献
9.
10.
电动汽车行业的迅速发展,逐步提高了对二次电池容量的要求,因此急需发展新型高容量锂电池。锂硫电池具有高理论比容量(1675mAh/g)和高理论比能量(2600Wh/kg),使其能够实现锂离子电池3~5倍的能量密度。但是,正极长链多硫化物溶解引起的容量衰减快、循环寿命短等因素限制了锂硫电池的实用化进程。本文针对正极聚硫锂溶解问题,从正极材料表面包覆、表面吸附、表面催化的角度对近年来提高锂硫电池循环性能的正极材料研究思路和研究进展进行综述,最后对提高锂硫电池性能的发展趋势提出展望。 相似文献
11.
12.
锂硫电池因其超高的理论能量密度被视为极具前景的下一代电化学储能体系,其中高比容量的硫正极提供了锂硫电池的能量密度优势并直接决定了电池的实际性能。经过数十年的发展,最具前景的硫正极体系分别是硫碳复合(S/C)正极和硫化聚丙烯腈(SPAN)正极。本文系统综述了S/C正极和SPAN正极的最新研究进展。首先,简要介绍了两种正极的工作原理并进行了比较。S/C正极发生固-液-固多相转化反应,充放电表现为双平台特征。与之相比,SPAN正极发生固-固反应,充放电曲线为单平台。然后,对两种正极所面临的挑战和目前报道的优化策略进行了系统的分析与讨论。对于S/C正极,主要调控策略包括电极结构修饰、电催化剂设计与辅助氧化还原介体调控;对于SPAN正极,主要调控策略包括电极结构设计、电极形貌调控、杂原子掺杂和外源性氧化还原介体调控。最后,在电池尺度上对S/C正极和SPAN正极进行了综合比较,并对基于S/C正极和SPAN正极的锂硫电池在未来所面对的机遇与挑战进行了展望。 相似文献
13.
锂硫电池具有较高的理论比容量(以硫计1675 mAh·g-1和2600 Wh·kg-1),以及低成本和绿色环保等优势,成为最有前景的下一代可充电储能器件之一。然而,锂硫电池内部严重的多硫化锂穿梭现象导致了电池容量的下降和使用寿命的快速降低。为实现锂硫电池的商业化,其严重的“穿梭效应”亟需改善。普通的商业隔膜有很大的孔径(500 nm),且不具有阻碍多硫化锂迁移的功能。因此,对隔膜进行表面修饰,引入功能化修饰层就成为了一种很有效的策略。本文综述了近年来隔膜表面修饰所遵循的方法以及在此基础上开发的新型隔膜,并对功能化的隔膜在提升锂硫电池性能上的前景进行了展望。 相似文献
14.
15.
锂硫电池具有理论能量密度高、环境友好和成本低等优点,有望成为替代锂离子电池的新一代储能系统。然而,锂硫电池充放电产物的绝缘性、可溶性多硫化锂的穿梭效应、硫正极体积膨胀及锂枝晶的不可控生长,严重影响了锂硫电池的实际容量发挥和循环稳定性。为解决上述问题,采用有机硫化合物来替代单质硫作为正极材料是有前途的策略。调控有机硫化合物的硫链、碳链及其相互作用,可改变其电化学反应过程,提高离子/电子电导,抑制穿梭效应。有机硫化合物作为电解液添加剂,可调控硫正极的反应过程并保护金属锂负极,作为聚合物电解质的改性链段可加速锂离子传导。本综述对有机硫化合物在锂硫电池的正极、电解液添加剂和固态电解质中的应用研究进展进行详细的阐述。将有机硫化合物的结构、反应机理和电化学性质联系起来,为解决锂硫电池存在的问题提供见解。最后,提出高性能有机硫化合物的设计合成和机理研究思路,以期实现可实用化的锂硫电池。 相似文献
16.
本文将三类粘结剂体系(PVDF、LA133和CMC+SBR)用于构筑锂硫电池硫正极,表征了不同粘结剂材料的官能团结构、结晶性能、热力学性质、电解液吸收性与粘结强度,考察了粘结剂种类对电极电化学性能的影响。结果表明,由1∶1质量比的CMC+SBR制作的硫电极吸液率低,剥离强度低,循环稳定性较差;无定形LA133支持高的粘结强度,维稳电极结构的能力强;PVDF因半结晶状态制约粘结效果,制作的电极吸液量高,但电荷转移阻抗小。基于PVDF制作的硫正极具有相对最优的电化学性能,其0.2C下循环100周后保留的可逆容量达722mAh·g~(-1),容量保持率达82.9%。 相似文献
17.
随着全球经济快速发展对高效绿色能源需求的不断增长,锂-硫电池因具有较高的能量密度,成为了下一代高能量密度二次电池研发的重点.然而,锂-硫电池面临的循环寿命短、库仑效率低、安全性能差、较高自放电等问题,使其目前还很难实现商品化.锂-硫电池存在的这些问题主要与正极活性硫材料的高绝缘性、放电过程中产生的多硫化物溶解于电解液、硫正极在充放电过程中的体积膨胀与收缩、以及锂负极支晶化等有关.通过从锂-硫电池硫复合正极、电解液、黏结剂和负极等4个方面综述了高比能锂-硫电池的最新研究进展,其中重点介绍了硫正极复合材料的进展情况. 相似文献
18.
19.
20.
锂硫电池因具有远高于传统锂离子电池的理论比容量和质量能量密度,而受到人们的广泛关注,近年来一直是高能锂金属电池领域的研究热点之一. 然而这一体系的一些固有特性问题依然没有得到解决,无法实现稳定理论容量输出,严重阻碍了锂硫电池的实际应用. 其中,比较突出的问题是电池充放电过程中生成可溶性中间产物-多硫化物-对硫基正极、锂基负极和电解液等电池关键组成部分具有深刻的影响. 本综述从多硫化物的热力学和动力学等性质入手,详细介绍了锂硫电池中关键材料的功能化设计和优化策略,并对未来的发展做出展望. 相似文献