首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Birnessite-type manganese oxide (BMO) was prepared by oxidation of Mn(NO3)2 with H2O2 in KOH solution. The nature and the extent of degradation of polyamide 6 (PA6) in the presence of samples were analysed by thermogravimetric analysis under static air atmosphere at several heating rates between 5 and 30 °C min?1. The surface and structure of BMO were characterized using infrared (IR) spectroscopy, X-ray diffraction, and thermal analysis techniques. The acid sites of BMO were investigated by IR using pyridine as a molecular probe. The activation energy for degradation estimated by Kissinger method for PA6 and BMO/PA6 system containing 10 mass% of BMO was found to be 212 and 144 kJ mol?1 under air, respectively. The catalytic activity observed in BMP catalyst was associated to a high lattice oxygen mobility.  相似文献   

2.
Phase formation in the Na2MoO4-K2MoO4-H2O system was studied at 25°C. Two incongruently saturating complex phases are formed in this system: Na3K(MoO4)2 · 9H2O and NaK3(MoO4)2. The densities, refractive indices, and dynamic viscosities of saturated solutions of the system were determined; molar volume and ionic strength isotherms were calculated. A correlation relation was found between solubility and solution properties in the system. The indicated double salts were recovered and characterized using chemical analysis, powder X-ray diffraction, complex thermal analysis, and IR spectroscopy.  相似文献   

3.
The interaction of Zr(NO3)4 and Na2MoO4 in an aqueous medium has been studied by the method of residual concentrations at 20°C. The compound Nа2[Zr(MoO4)3] is formed starting at the molar ratio Zr(NO3)4/Na2MoO4 ≥ 0.66. The compound has been characterized by X-ray diffraction, IR spectroscopy, and thermal analysis.  相似文献   

4.
A new molybdenum(VI) complex Cs2(NH4)2[Mo3O8(C2O4)3] (CAMO) has been prepared and characterized by chemical analysis and IR spectral studies. Thermal decomposition studies have been made using TG, DTA and DTG techniques. The compound is anhydrous and stable up to 160°C. Thereafter it decomposes in three stages. The first and the second stages occur in the temperature ranges 160–220°C and 220–280°C to give the intermediate compounds having the tentative compositions Cs4(NH4)2[Mo6O16(C2O4)3(CO3)2] and Cs4[Mo6O16(C2O4)2(CO3)2] respectively, the later then decomposing to give the end product Cs2Mo3O10 at 370°C. The end product was characterized by chemical analysis, IR spectral and X-ray studies.  相似文献   

5.
Vibrational and optical properties of MoO3 thin films have been studied by Raman and infrared spectroscopy. The films were deposited onto Si substrates at a temperature of 150 °C by chemical vapor deposition of Mo(CO)6 at atmospheric pressure and different amounts of oxygen in the reactor. The Raman and IR spectral analyses show that the as-deposited films are in general amorphous. Post-deposition annealing at 300 and 400 °C leads to crystallization and the MoO3 film structure is a mixture of orthorhombic and monoclinic MoO3 modifications. Transformation of the monoclinic crystallographic modification to a thoroughly orthorhombic layered structure is observed for films heated at temperatures above 400 °C. Electronic Publication  相似文献   

6.
Mixed single crystal was made by mixing saturated aqueous solutions of NiSO4 · 6H2O and CuSO4 · 5H2O by volume (80:20) and the mixture was kept to form the crystals at room temperature by slow evaporation process. After some days, big pieces of greenish blue, dark colored crystals were grown. To determine the weight of NiSO4 · 6H2O and CuSO4 · 5H2O in the crystal, Ni-DMG complexiometrical and EDTA gravimetrical analysis was done respectively. From this analysis it was concluded that 5.8 molecules of water of crystallization is present in the mixed single crystal. The crystals were characterized by UV-Visible, FTIR and single crystal X-ray diffraction studies. From single crystal XRD lattice parameters have been calculated. All these structural analysis confirms formation of new single crystal. Further, DTA-TGA, dc electrical conductivity and dielectric constant studies were done from the room temperature to 400 °C.From DTA studies it was observed that 5.8 molecules of water of crystallization get dehydrated in four major steps at temperature 115 °C, 150 °C, 240 °C and 325 °C respectively corresponding to the detachment of 1 mole, 3 moles, 1 mole and 0.8 mole of water of crystallization. DC electrical conductivity and dielectric constant studies also show close agreement to the dehydration steps. The observed peaks in the conductivity verses temperature graph have been explained on the basis of release of water molecules and subsequent dissociation of these released water molecules into H+ and OH ions.  相似文献   

7.
Solubility in the Li2MoO4-(NH4)2MoO4-H2O system at 25°C was studied. A congruently saturating double molybdate crystal hydrate LiNH4MoO4 · H2O was found to form in the system. The density, refractive index, viscosity, surface tension, and specific electrical conductivity were measured for saturated aqueous solutions of the system. Molar volume, ionic strength, and equivalent conductivity isotherms were calculated. A correlation is observed between the variations of these properties of solutions and solubility in the system. The double salt was recovered and characterized by chemical analysis, IR spectroscopy, and dynamic and quasi-equilibrium thermogravimetry. A thermolysis scheme is suggested proceeding from the thermal curves and chemical analysis of intermediate phases.  相似文献   

8.
The kinetics of synthesis of cobalt telluromolybdate, proceeding according to the equation, Co5TeO8 + 4MoO3 = Co4TeMo3O16 + CoMoO4, have been studied in the temperature range from 500 to 650°C. Reaction products were identified by X-ray diffraction, optical microscopy, and X-ray microanalysis. It has been observed that the reaction products form compact, distinctly separated layers on the surface of cobalt tellurate grains. Transport of MoO3 takes place by sublimation of this oxide, which is the rate-determining step of the reaction.  相似文献   

9.
The solid state reactions between TiO2 and Na2S2O8 or K2S2O8 have been investigated using TG, DTG, DTA, IR, and X-ray diffraction studies in the range of 20 to 1000°C.It has been shown that TiO2 reacts stoichiometrically (1 : 1) with Na2S2O8 in the range of 160 and 220°C forming the complex sodium monoperoxodisulfato—titanium(IV) as characterized by IR and X-ray analysis. The new complex then decomposes into the reactants above 190°C.An exothermic reaction has been observed between TiO2 and molten K2S2O7 at mole ratio 1:2 respectively and higher, in the range of 280 and 350°C. The IR and X-ray analyses have shown the formation of a complex namely, potassium tetrasulfato titanium(IV) for which the formula and structure have been proposed. This complex decomposes at higher temperatures into K2SO4 and a mixed sulfate of potassium and titanium. The mixed sulfate melts at 620°C and decomposes into K2SO4, TiO2, and the gaseous SO3.On the other hand, Na2S2O8 decomposes in a special mode producing a polymeric product of Na10S9O32. Decomposition of this species occurs after melting at 560°C into Na2SO4 and sulfur oxides. The decomposition reaction has been proved to be catalysed by TiO2 itself.  相似文献   

10.
Thermal cis-trans isomerization and decomposition of polyacetylene film prepared with a Ti(OC4H9)4–Al(C2H5)3 (Al/Ti = 4) system were investigated under inert gas or in vacuum by means of thermal analysis and infrared spectroscopy. Thermograms of differential thermal analysis of cis-polyacetylene revealed the existence of two exothermic peaks at 145 and 325°C and one endothermic peak at 420°C which were assigned to cis-trans isomerization, hydrogen migration accompanied with crosslinking reaction, and thermal decomposition, respectively. The isomerization was followed by infrared spectroscopy over the temperature range 75–115°C. The reaction did not obey simple kinetics. The apparent activation energy for the cis-trans isomerization was 17.0 kcal/mole for the polymer containing 88% cis configuration and increased with increasing trans content up to 38.8 kcal/mole for 80% trans content.  相似文献   

11.
The thermal decomposition of pure ammonium heptamolybdate tetrahydrate (AHMT), and doped with Li+, Na+ and K+ ions was investigated using thermogravimetry, differential thermal analysis, infrared and X-ray diffraction techniques. Results obtained revealed that the decomposition of AHMT proceeded in three decomposition stages in which both NH3 and H2O were released in all stages. The presence of 0.5 mol % alkali metal ions enhances the formation of the intermediateb (NH4)2MO7O22·2H2O while the decomposition of this intermediate into MoO3 is slightly affected in the presence of all dopant concentrations used. The infrared absorption spectra of the thermal products of AHMT treated with 10 mol% alkali metal ions (AMI) at 350°C indicated a reduction of some Mo6+ ions. By heating of AHMT above 500°C in presence of 5 or 10 mol % of AMI, a solid-solid interaction between alkali metal oxides and MoO3 giving rise to well crystallized alkali metal molybdates. finally the activation energies accompanied various decomposition stages were calculated.  相似文献   

12.
The phase diagrams of the ternary reciprocal systems Na,K‖BO2,MoO4 and Na,K‖BO2,WO4 were studied for the first time by a calculation-experimental method and differential thermal analysis. The coordinates were determined for binary eutectics of the diagonal stable sections NaBO2-K2MoO4(K2WO4) and the ternary invariant points e(55 mol % NaBO2, 45 mol % K2MoO4, 740°C), e(55 mol % NaBO2, 45 mol % K2WO4, 730°C), E(4.5 mol % NaBO2, 78 mol % Na2MoO4, 17.5 mol % K2MoO4, 652°C), E(4.5 mol % NaBO2, 78 mol % Na2WO4, 17.5 mol % K2WO4, 643°C), P2(5 mol % NaBO2, 56 mol % Na2MoO4, 39 mol % K2MoO4, 673°C), P2(5 mol % NaBO2, 56 mol % Na2WO4, 39 mol % K2WO4, 671°C). Binary solid solutions based on sodium and potassium metaborates were shown to be stable. Analytical models of phase equilibrium states of the ternary reciprocal systems Na,K‖BO2,MoO4(WO4) were obtained, which enable one to calculate melting (crystallization) points and construct isotherms at any given composition. The specific heats of melting of samples of invariant compositions were found by quantitative differential thermal analysis.  相似文献   

13.
A study of thermal behaviour of intimate mixtures of different molar ratios of potassium chlorate and chromium(III) oxide, and potassium chlorate and nickel(II) chromite(III) was made by employing thermogravimetry, differential thermal analysis, chemical analysis, infrared spectroscopy and X-ray powder diffraction analysis. Potassium chlorate in presence of Cr(III), starts decomposing around 200°C which is much below the decomposition temperature of pure KClO3. Each mole of Cr(III) takes up 8/3 moles of KClO3 to become oxidized into potassium dichromate.  相似文献   

14.
We have found for the first time a ferroelastic transition in many molybdates and tungstates with the Sc2(MoO4)3-type structure. Below the transition these phases are monoclinic (P21a), and above the transition they are orthorhombic (Pnca). Observed transition temperatures are: Al2(MoO4)3, 200°C; Al2(WO4)3, ?6°C; Cr2(MoO4)3, 385°C; Fe2(MoO4)3, 499°C; In2(MoO4)3, 335°C; In2(WO4)3, 252°C; and Sc2(MoO4)3, 9°C.  相似文献   

15.
In a study of the solid-state reactions in the ternary systems TeO2? MoO3? MoO2 and TeO2? MoO3? Te, approximately 70 selected compositions were sintered at 550°C to attain equilibrium conditions, and solid-state equilibrium relations were characterized by x-ray diffraction. In a large composition range, the interaction of TeO2 and MoO3 with the reducing agents MoO2 or Te leads to the reduced ternary oxide TeMo4O13 (m. p. 748°C), in addition to Te2MoO7, Te and (intermediate) molybdenum oxides. The compatibility relations for the binary systems TeO2? MoO2 and MoO3? Te are presented for the first time. In the TeO2? MoO2 system, three-phase regions are found: (Te2MoO7? TeO2? Te) on the TeO2? and (TeMo4O13? MoO2? Te) on the MoO2-rich sides with (TeMo4O13? Te2MoO7? Te) in the intermediate region. In the MoO3? Te system, three-phase regions (TeMo4O13? MoO2? Te), (TeMo4O13? Mo4O11? MoO2) and (TeMo4O13? MoO3? Mo4O11) were detected. TeMo4O13 presents two allotropic forms (α′ for T < 450°C, α for T > 450°C). Both structures have been characterized by I.R. and optical reflectance spectroscopy. Unit cell dimensions are also given.  相似文献   

16.
Li0.25Sr0.5(MoO4):Eu0.253+ red-emitting phosphors were prepared by the organic gel-thermal decomposition process with metal salts and citric acid as starting reagents. X-ray diffraction, scanning electron microscopy and photoluminescent spectroscopy were used to characterize the as-prepared phosphors. The Li0.25Sr0.5(MoO4):Eu0.253+ phase consisting of nanosized crystallites is formed at 400 °C and the nanosized crystallites with a tetragonal-dipyramid morphology increase with the calcination temperature and time. During the early period at 650 °C, the microstructure of the Li0.25Sr0.5(MoO4):Eu0.253+ crystallites are unstable and the re-crystallization for some particles takes place with a particle morphological modification. The optimized calcination conditions for the Li0.25Sr0.5(MoO4):Eu0.253+ phosphors are 650 °C for 13 h. The Li0.25Sr0.5(MoO4):Eu0.253+ phosphors with particle sizes about 0.5 to 2.0 μm obtained under the optimized conditions can be excited by the ultraviolet light 395 nm and blue light 466 nm, which are well met with the requirements for the current commercial near-UV and blue LEDs, and exhibit a high emission performance.  相似文献   

17.
Orthorhombic MoO3 and W-doped MoO3 nanobelts were successfully synthesized by a hydrothermal method. The effect of W dopant on the photocatalytic performance of W-doped MoO3 nanobelts was studied. The phase, morphology, and oxidation state of the products were characterized by X-ray diffraction analysis, Fourier-transform infrared and Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. In this research, MoO3 and W-doped MoO3 exhibited the same phase and morphology of orthorhombic nanobelts with growth along the [001] direction, including detection of Mo6+, O2?, and W6+ in the 3 mol% W-doped MoO3 sample. The photocatalytic performance of the as-synthesized MoO3 and W-doped MoO3 nanobelts was monitored through photodegradation of methylene blue (MB) under visible radiation. W-doped MoO3 nanobelts showed better photocatalytic performance than pure MoO3. The 3 mol% W-doped MoO3 photocatalyst exhibited very good visible-light-driven activity for photodegradation of MB, as high as 99 % within 60 min.  相似文献   

18.
Phase equilibria in the Li,K‖Cl,MoO4 ternary mutual system were studied by differential thermal analysis (DTA). The characteristics of the following three ternary eutectics were determined: E 1: 348°C, 41 mol % KCl, 7.75 mol % Li2MoO4, and 51.25 mol % LiCl; E 2: 475°C, 44 mol % KCl, 17.25 mol % Li2MoO4, and 38.75 mol % LiCl; and E 2: 477°C, 35 mol % KCl, 47 mol % Li2MoO4, and 18 mol % LiCl.  相似文献   

19.
The phase diagram for the system LiClCaCl2CaCrO4 has been studied using differential thermal analysis. LiClCaCl2CaCrO4 has been shown by X-ray diffraction to be a stable, diagonal section of the Li, Ca//Cl, CrO4 reciprocal ternary system. The three binary systems are: LiClCaCl2 which exhibits a double salt (LiCaCl3), which decomposes without melting at 439°C and a eutectic at 36.3 mole % CaCl2 (m.p. 487°C); CaCl2CaCrO4 which shows a eutectic at 23.4 mole % CaCrO4 (m.p. 660°C); and LiClCaCrO4 with a eutectic at 14.3 mole % CaCrO4 (m.p. 538°C).In the ternary system, a eutectic exists at 63.2 mole % LiCl32.9% CaCl23.9% CaCrO4 (m.p. 479°C). In addition, a four-phase equilibrium, involving all solid phases, exists at nearly all compositions at 435°C.Isotherms are shown for the liquidus surface (primary crystallization) and for the secondary crystallization surface. Isothermal and vertical sections through the ternary phase diagram are shown.  相似文献   

20.
NiWO4 and ZnWO4 were synthesized by the polymeric precursor method at low temperatures with zinc or nickel carbonate as secondary phase. The materials were characterized by thermal analysis (TG/DTA), infrared spectroscopy, UV–Vis spectroscopy and X-ray diffraction. NiWO4 was crystalline after calcination at 350 °C/12 h while ZnWO4 only crystallized after calcination at 400 °C for 2 h. Thermal decomposition of the powder precursor of NiWO4 heat treated for 12 h had one exothermic transition, while the precursor heat treated for 24 h had one more step between 600 and 800 °C with a small mass gain. Powder precursor of ZnWO4 presented three exothermic transitions, with peak temperatures and mass losses higher than NiWO4 has indicating that nickel made carbon elimination easier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号