首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A general and systematic approach for the development of mesostructurally-based continuum model of woven fabrics has been elaborated, relating the fabric behavior at the macroscopic continuum scale to the response and geometry of the fabric’s mesostructure (geometrical configuration of the weave and the yarn properties). Mesoscopic discrete models of dry fabric have been developed based on a discretization of the yarn geometry, accounting for the yarn–yarn interactions at the yarns crossing points. The yarns are modeled within a unit cell consisting of the repetitive fabric pattern as curved planar beams submitted to the reaction forces of the transverse yarns at discrete crossover points. Those reaction forces are expressed in semi-analytical form versus the yarn geometry and mechanical properties for general armour from beam theory. The equilibrium shape of the woven fabric is obtained by minimizing its total potential energy, accounting for the work of the reaction forces due to the transverse yarns. The absolute minimum of the structure’s total potential energy is achieved by a classical genetic algorithm. Simulation results show that plain weave presents a nonlinear response in the early deformation stage due to the crimp change, whereas twill shows a quasi linear response due to yarn extension being the dominant deformation mechanism. Plain weave fabric overall exhibits an orthotropic constitutive law, as biaxial simulations show. The transverse behavior of plain weave fabric is presently evaluated in terms of Poisson’s ratio, based on virtual simulations at the mesoscopic scale of analysis. Simulation results show that Poisson’s ratio first increases towards a maximum due to the rapid shrinkage of the sample in the transverse direction, and decreases thereafter when the crimp changes become limited by the reaction forces of the transverse yarns. The influence of the mechanical properties of both warp and weft on Poisson’s coefficient is assessed. The predictions of the mesoscopic models regarding the impact of yarn geometry and mechanical properties on the overall behavior provide a guideline for the design of woven fabrics.  相似文献   

2.
NONLINEAR MICRO-MECHANICAL MODEL FOR PLAIN WOVEN FABRIC   总被引:1,自引:0,他引:1  
The warp yarns and weft yarns of plain woven fabric which, being the principal axes of material of fabric, are orthogonal in the original configuration, but are obliquely crossed in the deformed configuration in general. The orthotropic constitutive model is unsuitable for fabric. In the oblique principal axes system the relations between loaded stress vectors and stress tensor are investigated, the stress fields of micro-weaving structures of fabric due to pure shear are carefully studied and, finally, a nonlinear micro-mechanical model for plain woven fabric is proposed. This model can accurately describe the nonlinear mechanical behavior of fabric observed in experiments. Under the assumption of small deformation and linearity of mechanical properties of fabric the model will degenerate into the existing linear model.  相似文献   

3.
三维机织复合材料的弹性性能预报模型   总被引:9,自引:0,他引:9  
易洪雷  丁辛 《力学学报》2003,35(5):569-577
建立了基于等效响应比拟技术的三维机织复合材料弹性性能预报模型.首先将三维机织物的结构单元分解为4个子元(经纱、纬纱、填充纱和接结纱),用几何模型去估算这些子元的体积分数.然后依据不同的外载形式,将复合材料的应力-应变关系等效地表达为3组诸子元所组成的三维弹簧网络.根据刚度系数的物理意义,采用不同的弹簧网络连接形式,并按体积平均化方法获得材料总体刚度矩阵中相应的刚度系数,进而计算得到三维机织复合材料的9个弹性系数.该模型考虑了层内交织经纱、层间交织接结纱的弯曲以及材料内部纯树脂区对三维机织复合材料弹性性能的影响.试验结果与模型的理论预测值进行比较,表明这个模型是有效的。  相似文献   

4.
ELASTIC BEHAVIOR ANALYSIS OF 3D ANGLE-INTERLOCK WOVEN CERAMIC COMPOSITES   总被引:3,自引:0,他引:3  
A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of 3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.  相似文献   

5.
I. INTRODUCTION Previous research on woven fabric ignored the micro-weaving structures in fabric and modeled thewoven fabric as a ?exible orthotropic plate[1??3]. However, such a model is unable to predict certainbuckling phenomena of fabric commonly ob…  相似文献   

6.
We propose a new approach for developing continuum models for the mechanical behavior of woven fabrics in planar deformation. We generate a physically motivated continuum model that can both simulate existing fabrics and predict the behavior of novel fabrics based on the properties of the yarns and the weave. The approach relies on the selection of a geometric model for the fabric weave, coupled with constitutive models for the yarn behaviors. The fabric structural configuration is related to the macroscopic deformation through an energy minimization method, and is used to calculate the internal forces carried by the yarn families. The macroscopic stresses are determined from the internal forces using equilibrium arguments. Using this approach, we develop a model for plain weave ballistic fabrics, such as Kevlar®, based on a pin-joined beam geometry. We implement this model into the finite element code ABAQUS and simulate fabrics under different modes of deformation. We present comparisons between model predictions and experimental findings for quasi-static modes of in-plane loading.  相似文献   

7.
Summary A theoretical study of the local elastodynamic stresses of woven fabric composites under dynamic loadings is presented in this article. The analysis focuses on the unit cell of an orthogonal woven fabric composite, which is composed of two sets of mutually orthogonal yarns of either the same fiber (nonhybrid fabric) or different fibers (hybrid fabric) in a matrix material. Using the mosaic model for simplifying woven fabric composites and a shear lag approach to account for the inter-yarn deformation, a one-dimensional analysis has been developed to predict the local elastodynamic and elastostatic behavior. The initial and boundary value problems are formulated and then solved using Laplace transforms. Closed form solutions of the dynamic displacements and stresses in each yarn and the bond shearing stresses at the interfaces between adjacent yarns are obtained in the time domain for any type of in-plane impact loadings. When time tends to infinity, the dynamic solutions approach to their corresponding static solutions, which are also developed in this article. Solutions of certain special cases are identical to those reported in the literature. Lastly, the dynamic stresses and bond shearing stresses of plain weave composites subjected to step uniform impacts are presented and discussed as an example of the general analytical model. Received 3 May 1999; accepted for publication 22 September 1999  相似文献   

8.
This paper was devoted to the three-dimensional nonlinear finite element analysis of inflatable beams. The beams under consideration are made of modern textile materials and can be used as a load-bearing beams or arches when inflated. A 3D Timoshenko beam with a homogeneous orthotropic woven fabric (OWF) was proposed. The model took into account the geometric nonlinearities and the follower force resulting from the inflation pressure. The use was made of the usual total Lagrangian form of the virtual work principle to perform the nonlinear equilibrium equations which were discretized by the finite element method. Two kinds of solutions were then investigated: finite elements solutions for linearized problems which were obtained by the means of the linearization around the prestressed reference configuration of the nonlinear equations and nonlinear finite element solutions which were performed by the use of an optimization algorithm based on the Quasi-Newton method. As an example, the bending problem of a cantilever inflated beam under concentrated load was considered and the deflection results improve the existing theoretical models. As these beams are made from fabric, the beam models were validated through their comparison with a 3D thin-shell finite element model. The influence of the material effective properties and the inflation pressure on the beam response was also investigated through a parametric study. The finite elements solutions for linearized problems were found to be close to the theoretical results existing in the literature. On the other hand, the results for the nonlinear finite element model were shown to be close to the results for the linearized finite elements model in the case of high mechanical properties and the nonlinear finite element model was used to improve the linearized model when the mechanical properties of the fabric are low.  相似文献   

9.
A computational micro-mechanical material model of woven fabric composite material is developed to simulate failure. The material model is based on repeated unit cell approach. The fiber reorientation is accounted for in the effective stiffness calculation. Material non-linearity due to the shear stresses in the impregnated yarns and the matrix material is included in the model. Micro-mechanical failure criteria determine the stiffness degradation for the constituent materials. The developed material model with failure is programmed as user-defined sub-routine in the LS-DYNA finite element code with explicit time integration. The code is used to simulate the failure behavior of woven composite structures. The results of finite element simulations are compared with available test results. The model shows good agreement with the experimental results and good computational efficiency required for finite element simulations of woven composite structures.  相似文献   

10.
11.
The objective of this paper is to develop a hybrid homogenization method to predict the elastic properties of a common woven glass/epoxy composite substrate for multilayer circuit board applications. Comprehensive high resolution 3D finite element (FE) models of a quarter of the repeated unit cell (RUC) for the woven glass/epoxy composite were developed based on different micromechanical schemes. . Specifically, four different micromechanics schemes were investigated: self-consistent, Mori–Tanaka, three-phase approach and composite cylinder assemblage (CCA). The element based strain concentration matrices were determined and used to obtain the homogenized woven glass/epoxy composite properties via a specially developed MATLAB code. Attention was further devoted to the predictions of the homogenized elastic moduli of the multilayer printed circuit board (PCB). The results from our simulations, based on Mori–Tanaka and CCA, are in good agreement with existing experimental results, indicating that the newly proposed homogenization scheme can be used as a design tool to predict the overall properties of woven composite materials typically used in multilayer PCB applications.  相似文献   

12.
张洁皓  段玥晨  侯玉亮  铁瑛  李成 《力学学报》2019,51(5):1411-1423
针对平纹编织复合材料低速冲击响应和损伤问题,提出了一种多尺度分析方法. 首先, 建立微观尺度单胞模型,引入周期性边界条件,采用最大主应力失效准则和直接刚度退化模型表征纤维丝和基体的损伤起始与演化,预测了纤维束的弹性性能和强度性能. 其次,将这些性能参数代入介观尺度单胞模型,基于Hashin和Hou的混合失效准则以及连续介质损伤模型对介观尺度单胞进行6种边界条件下的渐进损伤模拟.然后采用渐进均匀化方法,以介观尺度单胞为媒介预测了0$^\circ$和90$^\circ$子胞的性能参数,并建立平纹编织复合材料的子胞模型,进而扩展成为材料的宏观尺度低速冲击模型. 在此基础上,研究了平纹编织复合材料低速冲击下的力学响应与损伤特征.结果表明:宏观冲击仿真和试验吻合较好, 验证了多尺度方法的正确性;最大接触力、材料吸能和分层面积均随冲击能量的增大而增大,分层损伤轮廓逐渐从椭圆形向圆形转化;基体拉伸和压缩损伤的长轴方向分别与子胞材料主方向正交和一致,损伤面积前者远大于后者.   相似文献   

13.
The coupling between yarns in a piece of fabric has been analysed at the mesoscopic scale, in terms of its impact on the macroscopic unidirectional behaviour. Starting from a discrete model of a woven structure associated to a variational formulation of the equilibrium of the structure, the coupling between both yarns is introduced, the potential energy of which is calculated. The initial shape of the yarn, represented by a planar undulated beam supposed to be periodic, is described by a Fourier series. The coefficients of the series are expressed vs. the contact force exerted at the top of the undulations, and vs. the mechanical properties of the solicited yarn. The contact force is then expressed vs. the mechanical properties of the transverse yarn and vs. the vertical displacement of the contact point. The potential energy of the coupling is then built, assuming the continuity of the displacement at the contact points. The equilibrium shape of the yarn submitted to unidirectional traction is obtained numerically as the minimum of the total potential energy. The simulated traction curve reproduces in a satisfactorily manner the observed behaviour. The respective contributions of the flexional and extensional effects of the yarn are analysed. The consideration of the coupling enhances the rigidity of the response of the yarn; one demonstrates the effect of the geometrical and mechanical parameters of the transverse yarn. To cite this article: B. Ben Boubaker et al., C. R. Mecanique 331 (2003).  相似文献   

14.
A two-scale model is used to generate the macro-scale constitutive response of a sheet of woven fabric from a micro-scale model of interacting yarns regarded as crossed elasticae in contact. The model furnishes a macro-scale strain-energy function for an orthotropic membrane idealized as being weak in shear compared to the extensional resistance of material curves representing the yarns. The operative Legendre–Hadamard inequality for the membrane is derived and shown to be satisfied by a suitably relaxed version of the computed strain-energy function.  相似文献   

15.
利用平均化方法提出了倾斜内锁型三维机织陶瓷基复合材料弹性性能分析的三维细观力学模型,对材料的弹性性能进行了预测。这个力学模型考虑了倾斜内锁型三维机织陶瓷基复合材料经向纤维束的弯曲和纬向纤维束的平直,纤维束的横截面形状尺寸和相邻纤维束之间的孔洞以及材料制造过程中碳纤维性能下降对弹性性能的影响。基于层合板理论,提出两种单胞应变状态假设分别对材料的九个弹性常数进行了推导计算,结果表明两种方法理论的预测值非常接近。计算结果与实验值比较吻合,表明所提出的细观力学模型是合理的,可以为纺织陶瓷基复合材料的优化设计提供有价值的参考。  相似文献   

16.
A multiscale model for a fabric material is introduced. The model is based on the assumption that on the macroscale the fabric behaves as a continuum membrane, while on the microscale the properties of the microstructure are accounted for by a constitutive law derived by modeling a pair of overlapping crimped yarns as extensible elasticae. A two-scale finite element method is devised to solve selected boundary-value problems.  相似文献   

17.
编织复合材料弹性性能的细观力学模型   总被引:7,自引:0,他引:7  
燕瑛 《力学学报》1997,29(4):429-438
提出了编织复合材料弹性性能分析的细观力学模型,这个力学模型考虑了实际编织结构中的纬向和经向纤维束的曲屈,相邻纤维束之间的间隙和纤维束的横截面尺寸对编织复合材料弹性性能的影响,并探讨了在纤维束间纯树脂区内孔隙的含量和两种叠层结构对材料弹性性能的影响.理论计算结果与实测值的比较,表明所提出的细观力学模型是合理的.根据理论分析的结果,提出了优化单层和叠层编织结构的结构参数选择方法  相似文献   

18.
19.
A mesoscopic discrete model of fabric has been developed, accounting for the yarn–yarn interactions occurring at the yarn crossing points. The fabric yarns, described in their initial state by a Fourier series development, are discretized into elastic straight bars represented by stretching springs, and connected at frictionless hinges by rotational springs. In the first part of the paper, the behavior under uniaxial tension of a single yarn has been investigated, and the impact of the interactions of the transverse yarns has been quantitatively assessed. The consideration of the yarn interactions is extended in this second part at the scale of the whole network of interwoven yarns, under uniaxial and biaxial loading conditions. The effect of the transverse yarns properties under uniaxial tension is evidenced, as well as the impact of the biaxial loading ratio.  相似文献   

20.
均匀化方法在粘弹性多层复合材料中的应用   总被引:1,自引:0,他引:1  
主要研究了由各向同性线弹性加强体和各向同性线粘弹性基体组成的多层复合材料的问题,在已有的线弹性多层材料的均匀化方法的基础上,应用弹性一粘弹性对应原理,在Carson域中求解粘弹性多层材料的问题。通过Burgers模型表示线粘弹性基体材料,反演得到了多层材料的有效松弛模量和有效泊松比在时间域中的表达式,并且与实验结果和其他结果进行了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号