首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the spherical and deviator decomposition of the polarization and strain tensors, we present a general algorithm for the calculation of variational bounds of dimension d for any type of anisotropic linear elastic composite as a function of the properties of the comparison body. This procedure is applied in order to obtain analytical expressions of bounds for multiphase, linear elastic composites with cubic symmetry where the geometric shapes of the inclusions are arbitrary. For the validation, it can be proved that for the isotropic particular case, the bounds coincide with those recently reported by Gibiansky and Sigmund. On the other hand, based on this general procedure some, classical bounds reported by Hashin for transversely isotropic composites, are reproduced. Numerical calculations and some comparisons with other models and experimental data are shown.  相似文献   

2.
This paper deals with two-dimensional composites made of several isotropic linearly conducting phases in prescribed volume fractions. The primary focus is on the three-phase case; the generalization to a larger number of phases is straightforward.A class of high- but finite-rank laminates is introduced. The laminates saturate the known inequality bounds—due to the work of Hashin and Shtrikman, Lurie and Cherkaev, Tartar, and Murat and Tartar—on the effective conductivity tensor of any composite. These bounds depend only on the constituent material properties and volume fractions and not on the placement of these materials in the composite. The bounds are known not to be optimal for all admissible choices of the conductivities and volume fractions. However, they are now known to be realizable in a much larger range of these parameters than was previously known.The range of effective properties of our multiphase laminates strictly includes those corresponding to the composites found earlier by Milton and Kohn, Lurie and Cherkaev, and Gibiansky and Sigmund. The new optimal laminates are found in a systematic fashion by satisfying sufficient conditions on the fields in each layer. This leads to a simple algorithm for generating optimal laminates.In addition a new supplementary bound for multiphase structures is also proven which must be satisfied by composites with smooth interfaces.  相似文献   

3.
Connectivity and Effective Hydraulic Conductivity   总被引:1,自引:0,他引:1  
The effect of the connectivity of high-conductivity elements on the value the effective hydraulic conductivity of a saturated porous medium is investigated. The increase in effective conductivity due to the connectivity is estimated on the basis of a simple combinatorial model.  相似文献   

4.
When modeling flow and transport through unsaturated heterogeneous geological deposits, it may be neither computationally nor technically feasible to account for the actual heterogeneity in the simulations. One would fall short in terms of technical feasibility because there is simply no way that the entire spatial domain could be characterized (e.g., you cannot measure hydraulic conductivity at every location at a site). With respect to computational feasibility, the non-linear nature of the Richards equation (which is used to model the flow process) makes simulation of most sites extremely computationally intensive. The computational roadblock is being dismantled as computer hardware advances, but our inability to precisely characterize geological heterogeneity is expected to remain with us for a very long time. To address this problem, the analyst typically uses average or effective properties to model flow and transport behavior through heterogeneous media. In this paper, a variety of approaches for developing effective unsaturated flow properties are assessed. Computational results have been obtained which give the hydraulic conductivity ratios (K parallel/K nomal) for highly nonisotropic layered materials. These results are compared with analytical models. Good agreement was obtained for all soil saturation levels except for extremely dry conditions.This work was performed at Sandia National Laboratories, which is operated for the U.S. Department of Energy under contract number DE-AC04-76DP00789.  相似文献   

5.
A general expression for the energy-density function of sequentially laminated composites is derived. For the class of neo-Hookean composites in the limit of small deformations well-known results for linear transversely isotropic composites are recovered. However, it is shown that under large deformations these composites are not isotropic. Transversely isotropic composites are obtained with sequentially-coated composites in which the next rank composite is constructed by lamination of the previous composite with thin layers of the matrix phase. The transverse behavior of this sequentially-coated composite is neo-Hookean with shear modulus in the form of the Hashin-Shtrikman bounds for the corresponding class of linear composites. Comparison of the behaviors of these composites with recent estimates for transversely isotropic composites reveals good agreement up to relatively large deformations and volume fractions of the inclusion phase.  相似文献   

6.
Load and depth sensing indentation methods have been widely used to characterize the mechanical properties of the thin film-substrate systems. The measurement accuracy critically depends on our knowledge of the effective elastic modulus of this heterogeneous system. In this work, based on the exact solution of the Green's function in Fourier space, we have derived an analytical relationship between the surface tractions and displacements, which depends on the ratio of the film thickness to contact size and the generalized Dundurs parameters that describe the modulus mismatch between the film and substrate materials. The use of the cumulative superposition method shows that the contact stiffness of any axisymmetric contact is the same as that of a flat-ended punch contact. Therefore, assuming a surface traction of the form of [1−(r/a)2]−1/2 with radial coordinate r and contact size a, we can obtain an approximate representation of the effective elastic moduli, which agree extremely well with the finite element simulations for both normal and tangential contacts. Motivated by a recently developed multidimensional nanocontact system, we also explore the dependence of the ratio of tangential to normal contact stiffness on the ratio of film thickness to contact radius and the Dundurs parameters. The analytical representations of the correction factors in the relationship between the contact stiffness and effective modulus are derived at infinite friction conditions.  相似文献   

7.
The response of a transversely isotropic fiber-reinforced composite made out of two incompressible neo-Hookean phases undergoing finite deformations is considered. An expression for the effective energy-density function of the composite in terms of the properties of the phases and their spatial distribution is developed. For the out-of-plane shear and extension modes this expression is based on an exact solution for the class of composite cylinder assemblages. To account for the in-plane shear mode we incorporate an exact result that was recently obtained for a special class of transversely isotropic composites. In the limit of small deformation elasticity the expression for the effective behavior agrees with the well-known Hashin-Shtrikman bounds. The predictions of the proposed constitutive model are compared with corresponding numerical simulation of a composite with a hexagonal unit cell. It is demonstrated that the proposed model accurately captures the overall response of the periodic composite under any general loading modes.  相似文献   

8.
I.Intr0ducti0nThestudyofeffectivethermalconductivitiesofcompositesisaclassicaltopic.Theearlyresearcheswerec0ncernedmainIycompositesconsistingofisotropicphases,wheretheinterfacebetweentu'oconstituentswasassumedtobeperfect,i.e.,thetemperatureandheatfluxfiel…  相似文献   

9.
In the present work, applying the asymptotic homogenization method (AHM), the derivation of the antiplane effective properties for three-phase magneto-electro-elastic fiber unidirectional reinforced composite with parallelogram cell symmetry is reported. Closed analytical expressions for the antiplane local problems on the periodic cell and the corresponding effective coefficients are provided. Matrix and inclusions materials belong to symmetry class 6mm. Numerical results are reported and compared with the eigenfunction expansion-variational method (EEVM) and other theoretical models. Good agreements are found for these comparisons. In addition, with the herein implemented solution, it is possible to reproduce the effective properties of the reduced cases such as piezoelectric or elastic composites obtaining good agreements with previous reports.  相似文献   

10.
An arbitrarily curved three-dimensional anisotropic thin interphase between two anisotropic solids is considered. The purpose of this study is to model this interphase as a surface between its two neighbouring media by means of appropriately devised interface conditions on it. The analysis is carried out in the setting of unsteady heat conduction and dynamic elasticity, and makes use of the simple idea of a Taylor expansion of the relevant fields in thin regions. It consists of a generalization of a previous study by Bövik [1994. On the modelling of thin interface layers in elastic and acoustic scattering problems. Q. J. Mech. Appl. Math. 47, 17-42] which was confined to the isotropic setting. The remarkable feature of the presently derived anisotropic interface model is that formally it has a more compact form than that of Bövik's isotropic version. This is achieved by a judicious choice of surface differential operators which have been used in the derivation, and makes possible to show that several previously known classical interface models are recovered as special cases of the one obtained in this study, once suitable assumptions are made on the magnitude of the conductivity and elasticity tensors of the interphase.  相似文献   

11.
In this paper a hyperelastic constitutive model is developed for neo-Hookean composites with aligned continuous cylindrical pores in the finite elasticity regime. Although the matrix is incompressible, the composite itself is compressible because of the existence of voids. For this compressible transversely isotropic material, the deformation gradient can be decomposed multiplicatively into three parts: an isochoric uniaxial deformation along the preferred direction of the material (which is identical to the direction of the cylindrical pores here); an equi-biaxial deformation on the transverse plane (the plane perpendicular to the preferred direction); and subsequent shear deformation (which includes “along-fibre” shear and transverse shear). Compared to the multiplicative decomposition used in our previous model for incompressible fibre reinforced composites [Guo, Z., Peng, X.Q., Moran, B., 2006, A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus. J. Mech. Phys. Solids 54(9), 1952–1971], the equi-biaxial deformation is introduced to achieve the desired volume change. To estimate the strain energy function for this composite, a cylindrical composite element model is developed. Analytically exact strain distributions in the composite element model are derived for the isochoric uniaxial deformation along the preferred direction, the equi-biaxial deformation on the transverse plane, as well as the “along-fibre” shear deformation. The effective shear modulus from conventional composites theory based on the infinitesimal strain linear elasticity is extended to the present finite deformation regime to estimate the strain energy related to the transverse shear deformation, which leads to an explicit formula for the strain energy function of the composite under a general finite deformation state.  相似文献   

12.
Variational bounds for the effective behavior of nonlinear composites are improved by incorporating more-detailed morphological information. Such bounds, which are obtained from the generalized Hashin–Shtrikman variational principles, make use of a reference material with the same microstructure as the nonlinear composite. The geometrical information is contained in the effective properties of the reference material, which are explicitly present in the analytical formulae of the nonlinear bounds. In this paper, the variational approach is combined with estimates for the effective properties of the reference composite via the asymptotic homogenization method (AHM), and applied to a hexagonally periodic fiber-reinforced incompressible nonlinear elastic composite, significantly improving some recent results.  相似文献   

13.
A method for the homogenization of a layered elastic composite is presented. It allows direct, consistent, and accurate evaluation of the averaged overall frequency-dependent dynamic material constitutive relations without the need for a point-wise solution of the field equations. When the spatial variation of the field variables is restricted by Bloch-form (Floquet-form) periodicity, then these relations together with the overall conservation and kinematical equations accurately yield the displacement or stress mode-shapes and, necessarily, the dispersion relations. The method can also give the point-wise solution of the elastodynamic field equations (to any desired degree of accuracy), which, however, is not required for the calculation of the average overall properties. The resulting overall dynamic constitutive relations are general and need not be restricted by the Bloch-form periodicity.The formulation is based on micromechanical modeling of a representative unit cell of the composite. For waves in periodic layered composites, the overall effective mass-density and compliance (stiffness) are always real-valued whether or not the corresponding unit cell (representative volume element used as a unit cell) is geometrically and/or materially symmetric. The average strain and linear momentum are coupled and the coupling constitutive parameters are always each others' complex conjugates. We separate the overall constitutive relations, which depend only on the composition and structure of the unit cell, from the overall field equations which hold for any elastic composite; i.e., we use only the local field equations and material properties to deduce the overall constitutive relations. Finally, we present solved numerical examples to further clarify the structure of the averaged constitutive relations and to bring out the correspondence of the current method with recently published results.  相似文献   

14.
In order to predict the effective properties of multiferroic composite materials, the effective material constants of multiferroic composites with the coated inclusion and imperfect interface are investigated. Based on the generalized self-consistent theory, the closed-form solutions of the effective material constants are derived. For the composites with piezomagnetic inclusion, piezoelectric coating and polymer matrix, numerical calculations are performed to present the influences of the imperfect interface cooperating with the coating on the effective material constants. From the results, it can be observed that the effective constants can be enhanced by the coating but reduced by the imperfect interface. Moreover, the coating has the shielding effects on the imperfect interface for the composite structures with its higher filling ratio.  相似文献   

15.
The strong-contrast formulation is used to predict the effective conductivity of a porous material. The distribution, shape and orientation of the two phases are taken into account using two- and three-point probability distribution functions. A new approximation for the three-point probability function appropriate for two-phase media is proposed and discussed. Computed results for the effective conductivity using the strong-contrast formulation are compared to the Voigt and the Hashin-Shtrikman upper-bound estimates. These results show that the predicted effective conductivity is lower than both Voigt and Hashin-Shtrikman bounds. Compared to previous results using the weak-contrast formulation, the strong-contrast formulation seems to provide a better estimate for the effect of the microstructure on the conductivity.  相似文献   

16.
In this contribution, effective elastic moduli are obtained by means of the asymptotic homogenization method, for oblique two-phase fibrous periodic composites with non-uniform imperfect contact conditions at the interface. This work is an extension of previous reported results, where only the perfect contact for elastic or piezoelectric composites under imperfect spring model was considered. The constituents of the composites exhibit transversely isotropic properties. A doubly periodic parallelogram array of cylindrical inclusions under longitudinal shear is considered. The behavior of the shear elastic coefficient for different geometry arrays related to the angle of the cell is studied. As validation of the present method, some numerical examples and comparisons with theoretical results verified that the present model is efficient for the analysis of composites with presence of imperfect interface and parallelogram cell. The effect of the non uniform imperfection on the shear effective property is observed. The present method can provide benchmark results for other numerical and approximate methods.  相似文献   

17.
This paper deals with the prediction of the effective properties of nonlinear composites. Rather than bounding the effective energy, this work aims at bounding directly the effective stress-strain response, by extending a method originally introduced by Milton and Serkov (J. Mech. Phys. Solids 48 (2000) 1295) and recently refined by Talbot and Willis (Proc. Roy. Soc. 460 (2004) 2705). In this paper, bounding the effective response is achieved by introducing a linear comparison composite with the same micro-geometry as the given nonlinear composite, as Ponte Castañeda (J. Mech. Phys. Solids 39 (1991) 45) did for the energy. It is found that any lower bound for the energy of the linear comparison composite generates a corresponding bound for the stress-strain response of the nonlinear composite. A selection of examples is presented to illustrate the method and compare the bounds obtained with existing results.  相似文献   

18.
The load transfer mechanisms and effective moduli of single-walled nanotube (SWNT) reinforced composites are studied using a continuum model. A “critical” fiber length is defined for full load transfer by numerically evaluating the strain-energy-changes for different fiber lengths. The effective longitudinal Young’s modulus and bulk modulus of the composite are derived. The effect of the interphase is also discussed. The results indicate the fiber length is critical both to the load transfer efficiency and effective moduli of the composite. The SWNT-matrix interphase plays an important role in load transfer efficiency but affects the effective moduli only slightly.  相似文献   

19.
For the accurate prediction of the effective thermal conductivities of the twisted multi-filamentary superconducting strand, a two-step homogenization method is adopted. Based on the distribution of filaments, the superconducting strand can be decomposed into a set of concentric cylinder layers. Each layer is a two-phase composite composed of the twisted filaments and copper matrix. In the first step of homogenization, the representative volume element (RVE) based finite element (FE) homogenization method with the periodic boundary condition (PBC) is adopted to evaluate the effective thermal conductivities of each layer. In the second step of homogenization, the generalized self-consistent method is used to obtain the effective thermal conductivities of all the concentric cylinder layers. The accuracy of the developed model is validated by comparing with the local and full-field FE simulation. Finally, the effects of the twist pitch on the effective thermal conductivities of twisted multi-filamentary superconducting strand are studied.  相似文献   

20.
Effective physical parameters of a fine-layered medium whose layers exhibit linearized magnetostriction as ferrites are determined. Ferromagnetic materials of cubic system with ferromagnetic resonance are considered __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 8, pp. 36–43, August 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号