首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
General expressions are given for the dependence of the pressure and the effective elastic moduli on deformation and temperature in the form of a Taylor series expansion with respect to elastic and thermal strains. The temperature dependence of these expressions is derived within the quasi-harmonic approximation of lattice dynamics. The expressions are developed in terms of the Lagrangian strain and an alternative strain measure identical with the Eulerian strain for a pure deformation. They are then used to obtain the third- and fourth-order equations of state for crystals of cubic and tetragonal symmetry and to relate the parameters entering these equations to quantities which are commonly (or may be potentially) measured experimentally. It is shown that available ultrasonic data are not completely sufficient to evaluate the parameters of fourth-order equations of state. For tetragonal symmetry, this problem is still in abeyance; while in the cubic case, it is possible to estimate the fourth-order parameters from shock-wave data and so to give illustrative numerical applications of our equations. Finally, the third- and fourth-order Hugoniots and isotherms of Cu and Ag are calculated in terms of both the Lagrangian and Eulerian strain measures.  相似文献   

2.
3.
This paper investigates the Lagrangian-to-Eulerian transformation approach to the construction of noncanonical Poisson brackets for the conservative part of elastic solids and micromorphic elastic solids. The Dirac delta function links Lagrangian canonical variables and Eulerian state variables, producing noncanonical Poisson brackets from the corresponding canonical brackets. Specifying the Hamiltonian functionals generates the evolution equations for these state variables from the Poisson brackets. Different elastic strain tensors, such as the Green deformation tensor, the Cauchy deformation tensor, and the higher-order deformation tensor, are appropriate state variables in Poisson bracket formalism since they are quantities composed of the deformation gradient. This paper also considers deformable directors to comprise the three elastic strain density measures for micromorphic solids. Furthermore, the technique of variable transformation is also discussed when a state variable is not conserved along with the motion of the body.  相似文献   

4.
An important theory on the dynamics of complex interfaces is the Doi and Ohta theory where the interfacial contribution to the Cauchy stress tensor is determined from an interfacial conformation tensor. For a uniform deformation field in the Eulerian framework, Doi and Ohta adopted a decoupling approximation to reduce a fourth-order tensor into two second-order tensors and derived a differential equation governing the evolution of the interfacial conformation tensor. In this paper, a different formulation is presented for establishing the Cauchy stress tensor based on a path-independent interfacial energy function. By differentiating this interfacial energy function against a Lagrangian strain tensor, a nearly closed-form solution for the stress tensor was determined, involving only elementary algebraic and matrix operations. From this process, the stress-conformation relation proposed by Doi and Ohta is also confirmed from a thermodynamic perspective. The testing cases with uniaxial elongation and simple shear further showed improved fitting to the analytical or exact solutions.  相似文献   

5.
6.
V. Kobelev 《Meccanica》2012,47(3):745-753
The article presents the Lagrangian of defects in the solids, equipped with bending and warp. The deformation of such elastic medium with defects is based on Riemann-Cartan geometry in three dimensional space. In the static theory for the media with dislocations and disclinations the possible choice of the geometric Lagrangian yield the equations of equilibrium. In this article, the assumed expression for the free energy leading is equal to a volume integral of the scalar function (the Lagrangian) that depends on metric and Ricci tensors only. In the linear elastic isotropic case the elastic potential is a quadratic function of the first and second invariants of strain and warp tensors with two Lame, two mixed and two bending constants. For the linear theory of homogeneous anisotropic elastic medium the elastic potential must be quadratic in warp and strain. The conditions of stability of media with defects are derived, such that the medium in its free state is stable. With the increasing strain the stability conditions could be violated. If the strain in material attains the critical value, the instability in form of emergence of new topological defects occurs. The medium undergoes the spontaneous symmetry breaking in form of emerging topological defects.  相似文献   

7.
The familiar small strain thermodynamic 3D theory of isotropic pseudoelasticity proposed by Raniecki and Lexcellent is generalized to account for geometrical effects. The Mandel concept of mobile isoclinic, natural reference configurations is used in order to accomplish multiplicative decomposition of total deformation gradient into elastic and phase transformation (p.t.) parts, and resulting from it the additive decomposition of Eulerian strain rate tensor. The hypoelastic rate relations of elasticity involving elastic strain rate are derived consistent with hyperelastic relations resulting from free energy potential. It is shown that use of Jaumann corotational rate of stress tensor in rate constitutive equations formulation proves to be convenient. The formal equation for p.t. strain rate , describing p.t. deformation effects is proposed, based on experimental evidence. Phase transformation kinetics relations are presented in objective form. The field, coupled problem of thermomechanics is specified in rate weak form (rate principle of virtual work, and rate principle of heat transport). It is shown how information on the material behavior and motion inseparably enters the rate virtual work principle through the familiar bridging equation involving Eulerian rate of nominal stress tensor.
  相似文献   

8.
Herein we consider polycrystalline aggregates of cubic crystallites with arbitrary texture symmetry. We present a theory in which we keep track of the effects of crystallographic texture on elastic response up to terms quadratic in the texture coefficients. Under this theory, the Lamé constants pertaining to the isotropic part of the effective elasticity tensor of the polycrystal will generally depend on the texture. We introduce also two simple models, which we call HM-V and HM-R, by which we derive an explicit expression for the effective stiffness tensor and one for the effective compliance tensor. Each of these expressions contains a term quadratic in the texture coefficients and, in addition to three parameters given in terms of the single-crystal elastic constants, each carries an undetermined material coefficient. These two remaining coefficients can be determined by imposing the requirement that the expressions from models HM-V and HM-R be compatible to within terms linear in the texture coefficients.  相似文献   

9.
Following Ogden, a class of objective (Lagrangian and Eulerian) tensors is identified among the second-rank tensors characterizing continuum deformation, but a more general definition of objectivity than that used by Ogden is introduced. Time rates of tensors are determined using convective rates. Sufficient conditions of objectivity are obtained for convective rates of objective tensors. Objective convective rates of strain tensors are used to introduce pairs of symmetric stress and strain tensors conjugate in a generalized sense. The classical definitions of conjugate Lagrangian (after Hill) and Eulerian (after Xiao et al.) stress and strain tensors are particular cases of the definition of conjugacy of stress and strain tensors in the generalized sense used in the present paper. Pairs of objective stress and strain tensors conjugate in the generalized sense are used to formulate constitutive relations for a hyperelastic medium. A family of objective generalized strain tensors is introduced, which is broader than Hill’s family of strain tensors. The basic forms of the hyperelastic constitutive relations are obtained with the aid of pairs of Lagrangian stress and strain tensors conjugate after Hill (the strain tensors in these pairs belong to the family of generalized strain tensors). A method is presented for generating reduced forms of the constitutive relations with the aid of pairs of Lagrangian and Eulerian stress and strain tensors conjugate in the generalized sense which are obtained from pairs of Lagrangian tensors conjugate after Hill by mapping tensor fields on one configuration of a deformable body to tensor fields on another configuration.   相似文献   

10.
11.
12.
Herein we obtain a formula for the effective elastic stiffness tensor Ceff of an orthorhombic aggregate of cubic crystallites by the perturbation method. The effective elastic stiffness tensor of the polycrystal gives the relationship between volume average stress and volume average strain. Under Voigt's model, Reuss’ model and Man's theory, the elastic constitutive relation accounts for the effect of the orientation distribution function (ODF) up to terms linear in the texture coefficients. However, the formula derived in this paper delineates the effect of crystallographic texture on elastic response and shows quadratic texture dependence. The formula is very simple. We also consider the influence of grain shape to elastic constitutive relations of polycrystals. Some examples are given to compare computational results of the formula with those given by Voigt's model, Reuss's model, the finite element method, and the self-consistent method. In Section 3, we also present an expression of the perturbation displacement field, in which Green's function for an orthorhombic aggregate of cubic crystallites is included.  相似文献   

13.
Starting from the issue of what is the correct form for a Legendre transformation of the strain energy in terms of Eulerian and two-point tensor variables we introduce a new two-point deformation tensor, namely H=(FF−T)/2, as a possible deformation measure involving points in two distinct configurations. The Lie derivative of H is work conjugate to the first Piola–Kirchhoff stress tensor P. The deformation measure H leads to straightforward manipulations within a two-point setting such as the derivation of the virtual work equation and its linearization required for finite element implementation. The manipulations are analogous to those used for the Lagrangian and Eulerian frameworks. It is also shown that the Legendre transformation in terms of two-point tensors and spatial tensors require Lie derivatives. As an illustrative example we propose a simple Saint Venant–Kirchhoff type of a strain-energy function in terms of H. The constitutive model leads to physically meaningful results also for the large compressive strain domain, which is not the case for the classical Saint Venant–Kirchhoff material.  相似文献   

14.
在有限变形时导出了用欧拉观点描述的与用拉格朗日观点描述的材料性质张量之间用矩阵形式表达的转换关系,指出正确应用这个关系时将到唯一的计算结果,与计算方法无关,建立在连续体力学中应将材料性质实验结果与欧拉观点描述的材料性质张量相对应。  相似文献   

15.
Two different partitions of the rate of deformation tensor into its elastic and plastic parts are derived for elastic–plastic crystals in which crystallographic slip is the only cause of plastic deformation. One partition is associated with the Jaumann, and the other with convected rate of the Kirchhoff stress. Different expressions for the plastic part of the rate of deformation are obtained, and corresponding constitutive inequalities discussed. Relationship with the plastic part of the rate of the Lagrangian strain is also given.  相似文献   

16.
In the present work a novel inelastic deformation caused internal dissipation inequality by isotropy is revealed. This inequality has the most concise form among a variety of internal dissipation inequalities, including the one widely used in constitutive characterization of isotropic finite strain elastoplasticity and viscoelasticiy. Further, the evolution term describing the difference between the rate of deformation tensor and the “principal rate” of the elastic logarithmic strain tensor is set, according to the standard practice by isotropy, to equal a rank-two isotropic tensor function of the corresponding branch stress, with the tensor function having an eigenspace identical to the eigenspace of the branch stress tensor. Through that a general form of evolution equation for the elastic logarithmic strain is formulated and some interesting and important results are derived. Namely, by isotropy the evolution of the elastic logarithmic strain tensor is embodied separately by the evolutions of its eigenvalues and eigenprojections, with the evolution of the eigenprojections driven by the rate of deformation tensor and the evolution of the eigenvalues connected to specific material behavior. It can be proved that by isotropy the evolution term in the present dissipation inequality stands for the essential form of the evolution term in the extensively applied dissipation inequality.  相似文献   

17.
Asymptotic stress and deformation fields under the contact point singularities of a nearly-flat wedge indenter and of a flat punch are derived for elastic ideally-plastic single crystals with three effective in-plane slip systems that admit a plane strain deformation state. Face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal-close packed (HCP) crystals are considered. The asymptotic fields for the flat punch are analogous to those at the tip of a stationary crack, so a potential solution is that the deformation field consists entirely of angular constant stress plastic sectors separated by rays of plastic deformation across which stresses change discontinuously. The asymptotic fields for a nearly-flat wedge indenter are analogous to those of a quasistatically growing crack tip fields in that stress discontinuities can not exist across sector boundaries. Hence, the asymptotic fields under the contact point singularities of a nearly-flat wedge indenter are significantly different than those under a flat punch. A family of solutions is derived that consists entirely of elastically deforming angular sectors separated by rays of plastic deformation across which the stress state is continuous. Such a solution can be found for FCC and BCC crystals, but it is shown that the asymptotic fields for HCP crystals must include at least one angular constant stress plastic sector. The structure of such fields is important because they play a significant role in the establishment of the overall fields under a wedge indenter in a single crystal. Numerical simulations—discussed in detail in a companion paper—of the stress and deformation fields under the contact point singularity of a wedge indenter for a FCC crystal possess the salient features of the analytical solution.  相似文献   

18.
Hencky's elasticity model is an isotropic, finite hyperelastic equation obtained by simply replacing the Cauchy stress tensor and the infinitesimal strain tensor in the classical Hooke's law for isotropic infinitesimal elasticity with the Kirchhoff stress tensor and Hencky's logarithmic strain tensor. A study by Anand in 1979 and 1986 indicates that it is a realistic finite elasticity model that is in good accord with experimental data for a variety of engineering materials for moderate deformations. Most recently, by virtue of well-founded physical grounds and rigorous mathematical procedures it has been demonstrated by these authors that this model may be essential to achieving self-consistent Eulerian rate type theories of finite inelasticity, e.g., the J 2-flow theory for metal plasticity, etc. Its predictions have been studied for some typical deformation modes, including extension, simple shear and torsion, etc. Here we are concerned with finite bending of a rectangular block. We show that a closed-form solution may be obtained. We present explicit expressions for the bending angle and the bending moment in terms of the maximum or minimum circumferential stretch in a general case of compressible deformations for any assigned stretch normal to the bending plane. In particular, simplified results are derived for the plane strain case and for the case of incompressibility. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Homogeneous, anisotropic and linearly elastic solids, subjected to a given state of strain (or stress), are considered. The problem dealt with consists in finding the mutual orientations of the principal directions of strain to the material symmetry axes in order to make the strain energy density stationary. Such relative orientations are described through three Euler’s angles. When the stationarity problem is formulated for the generally anisotropic solid, it is shown that the necessary condition for stationarity demands for coaxiality of the stress and the strain tensors. From this feature, a procedure which leads to closed form solutions is proposed. To this end, tetragonal and cubic symmetry classes, together with transverse isotropy, are carefully dealt with, and for each case all the sets of Euler’s angles corresponding to critical points of the energy density are found and discussed. For these symmetries, three material parameters are then defined, which play a crucial role in ordering the energy values corresponding to each solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号