首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An analytical approach is presented for the forced vibration analysis of a plate containing a surface crack of variable angular orientation, based on three different boundary conditions. The method is based on classical plate theory. Firstly, the equation of motion is derived for the plate containing the angled surface crack with respect to one side of the plate and subjected to transverse harmonic excitation. The crack formulation representing the angled surface crack is based on a simplified line-spring model. Then, by employing the Berger formulation, the derived governing equation of motion of the cracked plate model is transformed into a cubic nonlinear system. The nonlinear behaviour of the cracked plate model is thus investigated from the amplitude–frequency equation by use of the multiple scales perturbation method. For both cracked square and rectangular plate models, the influence of the boundary conditions, the crack orientation angle, crack length, and location of the point load is demonstrated. It is found that the vibration characteristics and nonlinear characteristics of the plate structure can be greatly affected by the orientation of the crack in the plate. Finally the validity of the developed model is shown through comparison of the results with experimental work.  相似文献   

2.
This paper deals with a particular arrangement of a statically balanced system using 3 springs of prescribed material stiffness and critical geometrical parameter. The dynamics is described by a nonlinear differential equation upto septic power following odd nonlinearity for small disturbance from static equilibrium position. The governing differential equation is solved analytically by the combination of the linearisation of the equation with the method of Harmonic Balancing to observe the low natural frequency at fixed point and a finite displacement range in the neighbourhood of the equilibrium point where the dynamic stiffness is low. By this approximation method, the behaviour of the displacement with increase in time as well as the phase-plot of Cubic Quintic Septic Duffing equation for a set of parameter values is studied at the equilibrium position and its neighbourhood.  相似文献   

3.
The natural frequencies of a circular plate of variable thickness under the action of an inplane force are discussed on the basis of the classical theory of plates. The governing differential equation of motion is solved by the method of Frobenius. Frequency parameters of clamped as well as simply supported plates in the first two modes of vibration are computed for various values of a taper parameter, β, and the inplane force, both for linear and parabolic variations of thickness.  相似文献   

4.
This study proposes an analytical model for nonlinear vibrations in a cracked rectangular isotropic plate containing a single and two perpendicular internal cracks located at the center of the plate. The two cracks are in the form of continuous line with each parallel to one of the edges of the plate. The equation of motion for isotropic cracked plate, based on classical plate theory is modified to accommodate the effect of internal cracks using the Line Spring Model. Berger?s formulation for in-plane forces makes the model nonlinear. Galerkin?s method used with three different boundary conditions transforms the equation into time dependent modal functions. The natural frequencies of the cracked plate are calculated for various crack lengths in case of a single crack and for various crack length ratio for the two cracks. The effect of the location of the part through crack(s) along the thickness of the plate on natural frequencies is studied considering appropriate crack compliance coefficients. It is thus deduced that the natural frequencies are maximally affected when the crack(s) are internal crack(s) symmetric about the mid-plane of the plate and are minimally affected when the crack(s) are surface crack(s), for all the three boundary conditions considered. It is also shown that crack parallel to the longer side of the plate affect the vibration characteristics more as compared to crack parallel to the shorter side. Further the application of method of multiple scales gives the nonlinear amplitudes for different aspect ratios of the cracked plate. The analytical results obtained for surface crack(s) are also assessed with FEM results. The FEM formulation is carried out in ANSYS.  相似文献   

5.
冲击载荷作用下边界条件对方板的毁伤破坏具有很大影响。利用落锤试验机开展了不同边界支撑下固支方板的冲击试验,为获取固支方板边界撕裂的典型破坏模式,专门设计加工了与固支方板尺寸相当的冲击锤头和可改变倒角的方板支撑框架。研究结果表明:(1)冲击载荷作用下,固支方板呈现出塑性大变形、单边撕裂、双边撕裂等典型破坏模式,倒角越小,方板越容易撕裂;(2)边界支撑对固支方板中心位移、整体变形轮廓影响较小,但对方板的撕裂长度、临界撕裂阈值存在较大影响;(3)不同边界支撑主要改变方板边界处的剪切应变,边界支撑倒角越小,剪切效果越明显,方板边界临界撕裂应变位于[0.191,0.241]区间。  相似文献   

6.
Transverse vibration and stability analysis of circular plate subjected to follower force and thermal load are analyzed . B ased on the thin plate theory in involving the variable temperature, the differential equation of transverse vibration for the axisymmetric circular plate subjected to follower force and thermal load is established. Then, the differential equation of vibration and corresponding boundary conditions are discretized by the differential quadrature method. Meanwhile, the generalized eigenvalue under three different boundary conditions are calculated. In this case, the change curve of the first order dimensionless complex frequency of the circular plate subjected to the follower force in the different conditions with the variable temperature coefficient and temperature load is analyzed. The stability and corresponding critical loads of the circular plate subjected to follower force and thermal load with simply supported edge, clamped edge and free edge are discussed. The results provide theoretical basis for improving the dynamic stability of the circular plate.  相似文献   

7.
The steady magnetohydrodynamic (MHD) mixed convection boundary layer flow of a viscous and electrically conducting fluid near the stagnation-point on a vertical permeable surface is investigated in this study. The velocity of the external flow and the temperature of the plate surface are assumed to vary linearly with the distance from the stagnation-point. The governing partial differential equations are first transformed into ordinary differential equations, before being solved numerically by a finite-difference method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. Both assisting and opposing flows are considered. It is found that dual solutions exist for both cases, and the range of the mixed convection parameter for which the solution exists increases with suction.  相似文献   

8.
Galerkin's variational method has been used in the past by several investigators [1–3] to solve bending problems of clamped skew plates. In this paper the suitability of the Galerkin method for solution of problems of buckling under the action of in-plane forces and of free vibration of skew plates is studied. The method is first applied to investigate the problems for clamped rectangular sandwich plates. After the validity of the method has been established, the method is then extended to analyze similar problems for clamped skew sandwich plates. The governing differential equations for the skew sandwich plates are obtained by transforming the corresponding differential equations in Cartesian coordinates into skew co-ordinates. The parameters considered herein for the buckling and free vibration behaviour of the skew sandwich plates are the aspect ratio of the plate, Poisson's ratio, skew angle and various shearing stiffnesses of the core. Simplicity and quick convergence is the advantage of the method in comparison with other much more laborious numerical methods requiring extensive computer facilities.  相似文献   

9.
This paper presents a solution for the displacement of a uniform elastic thin plate with an arbitrary cavity, modelled using the biharmonic plate equation. The problem is formulated as a system of boundary integral equations by factorizing the biharmonic equation, with the unknown boundary values expanded in terms of a Fourier series. At the edge of the cavity we consider free-edge, simply-supported and clamped boundary conditions. Methods to suppress ill-conditioning which occurs at certain frequencies are discussed, and the combined boundary integral equation method is implemented to control this problem. A connection is made between the problem of an infinite plate with an arbitrary cavity and the vibration problem of an arbitrarily shaped finite plate, using the jump discontinuity present in single-layer distributions at the boundary. The first few frequencies and modes of displacement are computed for circular and elliptic cavities, which provide a check on our numerics, and results for the displacement of an infinite plate are given for four specific cavity geometries and various boundary conditions.  相似文献   

10.
Free transverse vibrations of an isotropic rectangular plate of variable thickness resting on an elastic foundation has been studied on the basis of classical plate theory. The fourth-order differential equation governing the motion is solved by using the quintic spline interpolation technique. Characteristic equations for plates of exponentially varying thickness have been obtained for three combinations of boundary conditions at the edges. Frequencies, mode shapes and moments have been computed for different values of the taper constant and the foundation moduli for the first three modes of vibration.  相似文献   

11.
Natural frequencies of a pre-twisted blade in a centrifugal force field   总被引:1,自引:0,他引:1  
In this paper, starting with the thin shell theory, the governing partial differential equation of motion for the transverse deflection of a rotating pre-twisted plate is derived. Strain-displacement relationships include the effect of warping of the cross-section due to twist-bend coupling effect introduced as a result of pre-twist in the plate of non-circular (rectangular) cross-section. Then the equation of motion, thus derived, is used to formulate the free vibration of a typical turbo-machinery cantilevered airfoil blade by considering it as a plate of an equivalent rectangular cross-section subjected to a quasi-static load due to centrifugal force field. The analytical derivation considers both the stress-stiffening as well as stress-softening effects of the centrifugal forces on the spinning airfoil. The partial differential equation governing the flexural motion of the plate is transformed into a matrix-eigenvalue form using a Rayleigh-Ritz technique. The plate deformations are represented by a set of ‘admissible’ sinusoidal trial functions, which fully satisfy all the clamped-end constrains as well as the free-edge boundary conditions. The results of the analytical model exhibit an excellent agreement with the previously published test data both for thin and thick plate geometries and even in highly twisted configurations. The results of the eigenvalue solution are presented in a non-dimensional form for plates of varying aspect ratios and different amounts of pre-twist in the plate. The numerical results are directly applicable in determining the static and running frequencies of typical blades used in turbo-machinery.  相似文献   

12.
Free axisymmetric vibrations of an isotropic, elastic, non-homogeneous circular plate of linearly varying thickness have been studied on the classical theory of plates. The non-homogeneity of the material of the plate is assumed to arise due to the variation of Young's modulus and density with the radius vector whereas Poisson's ratio is assumed to remain constant. The governing differential equation of motion is solved by the method of Frobenius. The transverse displacement of the plate has been expressed as a power series in terms of the radial co-ordinate. The frequency parameters corresponding to the first two modes of vibration have been computed for different values of the non-homogeneity parameter and taper constant and for clamped and simply supported edge conditions of the plate. A comparison between the numerical results for homogeneous and non-homogeneous material of the plate is also made.  相似文献   

13.
Free vibration analysis of annular moderately thick plates integrated with piezoelectric layers is investigated in this study for different combinations of soft simply supported, hard simply supported and clamped boundary conditions at the inner and outer edges of the annular plate on the basis of the Levinson plate theory (LPT). The distribution of electric potential along the thickness direction in the piezoelectric layer is assumed as a sinusoidal function so that the Maxwell static electricity equation is approximately satisfied. The differential equations of motion are solved analytically for various boundary conditions of the plate. In this study the closed-form solution for characteristic equations, displacement components of the plate and electric potential are derived for the first time in the literature. To demonstrate the accuracy of the present solution, comparison studies is first carried out with the available data in the literature and then natural frequencies of the piezoelectric coupled annular plate are presented for different thickness-radius ratios, inner-outer radius ratios, thickness of piezoelectric, material of piezoelectric and boundary conditions. Present analytical model provides design reference for piezoelectric material application, such as sensors, actuators and ultrasonic motors.  相似文献   

14.
In this paper, the nonlinear forced vibration behavior of composite plates reinforced by carbon nanotubes is investigated by a numerical approach. The reinforcement is considered to be functionally graded (FG) in the thickness direction according to a micromechanical model. The first-order shear deformation theory and von Kármán-type kinematic relations are employed. The governing equations and the corresponding boundary conditions are derived with the use of Hamilton's principle. The generalized differential quadrature (GDQ) method is utilized to achieve a discretized set of nonlinear governing equations. A Galerkin-based scheme is then applied to obtain a time-varying set of ordinary differential equations of Duffing-type. Subsequently, a time periodic discretization is done and the frequency response of plates is determined via the pseudo-arc length continuation method. Selected numerical results are given for the effects of different parameters on the nonlinear forced vibration characteristics of uniformly distributed carbon nanotube- and FG carbon nanotube-reinforced composite plates. It is found that with the increase of CNT volume fraction, the flexural stiffness of plate increases; and hence its natural frequency gets larger. Moreover, it is observed that the distribution type of CNTs significantly affects the vibrational behavior of plate. The results also show that when the mid-plane of plate is CNT-rich, the natural frequency takes its minimum value and the hardening-type response of plate is intensified.  相似文献   

15.
Vibration analysis of single-layered graphene sheets (SLGSs) is investigated using nonlocal continuum plate model. To this end, Eringens's nonlocal elasticity equations are incorporated into the classical Mindlin plate theory for vibrations of rectangular nanoplates. In contrast to the classical model, the nonlocal model developed in this study has the capability to evaluate the natural frequencies of the graphene sheets with considering the size-effects on the vibrational characteristics of them. Solutions for frequencies of the free vibration of simply-supported and clamped SLGSs are computed using generalized differential quadrature (GDQ) method. Then, molecular dynamics (MD) simulations for the free vibration of various SLGSs with different values of side length and chirality are employed, the results of which are matched with the nonlocal model ones to derive the appropriate values of the nonlocal parameter relevant to each boundary condition. It is found that the value of the nonlocal parameter is independent of the magnitude of the geometrical variables of the system.  相似文献   

16.
A formulation is developed to predict the vibration response of a finite length, submerged plate due to a line drive. The formulation starts by describing the fluid in terms of elliptic cylinder coordinates, which allows the fluid loading term to be expressed in terms of Mathieu functions. By moving the fluid loading term to the right-hand side of the equation, it is considered to be a force. The operator that remains on the left-hand side is the same as that of the in vacuo plate: a fourth-order, constant coefficient, ordinary differential equation. Therefore, the problem appears to be an inhomogeneous ordinary differential equation. The solution that results has the same form as that of the in vacuo plate: the sum of a forced solution, and four homogeneous solutions, each of which is multiplied by an arbitrary constant. These constants are then chosen to satisfy the structural boundary conditions on the two ends of the plate. Results for the finite plate are compared to the infinite plate in both the wave number and spatial domains. The theoretical predictions of the plate velocity response are also compared to results from finite element analysis and show reasonable agreement over a large frequency range.  相似文献   

17.
Free axisymmetric vibrations of a polar orthotropic annular plate of linearly varying thickness resting on an elastic foundation of Winkler type are studied on the basis of classical theory of plates. The fourth order linear differential equation with variable coefficients governing the motion is solved by using the quintic spline interpolation technique for three different combinations of boundary conditions. The effect of the elastic foundation together with the orthotropy on the natural frequencies of vibration is illustrated for different values of the radii ratio and the thickness variation parameter for the first three modes of vibration. Transverse displacements and moments are presented for a specified plate. The validity of the spline technique is demonstrated by presenting a comparison of present results with those available in the literature.  相似文献   

18.
The fourth order differential equation governing the transverse motion of an elastic rectangular plate of variable thickness has been solved, by using the quintic spline interpolation technique. An algorithm for computing the solution of this differential equation is presented, for the case of equal intervals. Frequencies, mode shapes and moments for doubly symmetric, antisymmetric-symmetric and second symmetric-symmetric modes of vibration are presented for various cases of boundary conditions.  相似文献   

19.
A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.  相似文献   

20.
Fundamental frequencies of vibrating circularly periodic plates with a circular core have been determined analytically. A boundary perturbation method is developed to extract the fundamental eigenvalue of the governing biharmonic boundary value problem. The method is then applied to wavy and polygonal plates with clamped and simply supported outer boundary conditions. Clamped, simply supported, and free circular cores are considered. Approximate analytical formulations of the fundamental frequency for such plates with core are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号