首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane degradations by biofouling and free chlorine oxidation are the major obstacles for aromatic polyamide thin-film-composite (TFC) reverse osmosis (RO) membranes to realize high performance over a long period of operation. In this work, a hydantoin derivative, 3-monomethylol-5,5-dimethylhydantoin (MDMH), was grafted onto the nascent aromatic polyamide membrane surfaces by the reactions with active groups (e.g., acyl chloride groups) in the surfaces. The grafted MDMH moieties with high reaction activity and free chlorine could play as sacrificial pendant groups when membranes suffer from chlorine attacks, and the chlorination products N-halamines with strong antimicrobial function could sterilize microorganisms on membrane surfaces and then regenerate to MDMH. This was designed as a novel means to improve both chlorine resistances and anti-biofouling properties of the aromatic polyamide TFC RO membranes.Attenuated total reflectance mode Fourier transform infrared spectroscopy (ATR-FTIR) revealed that the MDMH-modified membranes had two characteristic bands at 1772 and 1709 cm−1 corresponding to two carbonyl groups in hydantoin ring. This suggested the successful grafting of MDMH onto the membrane surfaces, which was further confirmed and quantified by X-ray photoelectron spectroscopy (XPS) analysis. After modification with MDMH, the membrane surface hydrophilicity increased obviously as contact angles decreased from 57.7° to 50.4–31.5°. But, there was no obvious change in membrane surface roughness after modification. The MDMH-modified membranes were shown to possess high chlorine resistances with small changes in water fluxes and salt rejections after chlorination with 100–2000 ppm h chlorine at pH 4. The chlorinated MDMH-modified membranes demonstrated obvious sterilization effects on Escherchia coli and substantial preventions against microbial fouling. Therefore, the MDMH-modified membranes offer a potential use as a new type of chlorine resistance and anti-biofouling TFC RO membranes.  相似文献   

2.
The relationship between the surface structures of skin layers of crosslinked aromatic polyamide composite reverse osmosis (RO) membranes and their RO performances have been studied using two surface analytical techniques: SEM and AFM. As a result, it was found that RO membranes whose skin layer surface structures were rough produced high fluxes, and an approximately linear relationship existed between this surface roughness and RO membrane flux. Accordingly, skin layer surface unevenness of crosslinked aromatic polyamide composite RO membranes is regarded as an enlargement of the effective RO membrane area.  相似文献   

3.
新型聚酰亚胺-氨酯反渗透复合膜的结构与性能   总被引:1,自引:0,他引:1  
通过界面聚合方法, 将功能单体N,N′-二甲基间苯二胺(DMMPD)与多元酰氯5-氯甲酰氧基-异肽酰氯(CFIC)聚合, 制得一种耐氧化的聚酰亚胺-氨酯反渗透复合膜. 采用全反射傅里叶变换红外光谱(ATR-FTIR)和X射线光电子能谱(XPS)分析了膜活性层的化学结构, 考察了膜的耐氧化性能, 并探讨了膜活性层化学结构与膜抗氧化性能之间的关系.  相似文献   

4.
A composite RO membrane with high salt rejection and high flux for the desalination of seawater was prepared by treating a porous polysulfone (PS) support sequentially with a di-amine and then with a polyfunctional acid chloride, thereby forming a thin film of polyamide (PA) on the PS support. In order to establish conditions for the development of suitable thin film composite (TFC) membranes on a coating machine, various parametric studies were carried out which included varying the concentration of reactants, reaction time, curing temperature and curing time for thin film formation by the interfacial polymerization technique. By suitable combination of these factors,a desired thin film of polyamide with improved performance for seawater desalination could be obtained. Moreover, the product water fluxes were considerably enhanced by post-treatment of the TFC membrane. Continuous sheets of TFCs were developed on the mechanical coating unit and tested for RO performance in a plate-and-frame configuration with synthetic seawater. The performance of these composite membranes was also determined for the separation of organics and compared with cellulose acetate (CA) membranes.  相似文献   

5.
The impacts of membrane degradation due to chlorine attack on the rejection of pharmaceutically active compounds (PhACs) by nanofiltration and reverse osmosis membranes were investigated in this study. Membrane degradation was simulated by soaking the membranes in a sodium hypochlorite solution of various concentrations over 18 h. Changes in membrane surface properties were characterised by contact angle measurement, atomic force microscopy analysis, and streaming potential measurement. The impacts of hypochlorite exposure to the membrane separation processes were ascertained by comparing the rejection of PhACs by virgin and chlorine-exposed membranes. Overall, the reverse osmosis BW30 membrane and the tight nanofiltration NF90 membrane were much more resilient to chlorine exposure than the larger pore size TFC-SR2 and NF270 nanofiltration membranes. In fact, rejection of all three PhACs selected in this study by the BW30 remained largely unchanged after hypochlorite exposure and further characterisation did not reveal any evidence of compromised separation capability. In contrast, the effects of chlorine exposure to the two loose nanofiltration membranes were quite profound. While chlorine exposure generally resulted in reduced rejection of PhACs, a small increase in rejection was observed when a more dilute hypochlorite solution was used. Changes in the membrane surface morphology as well as observed rejection of inorganic salts and PhACs were found to be consistent with mechanisms of chlorine oxidation of polyamide membranes reported in the literature. Chlorine oxidation consistently resulted in a more negative zeta potential of all four membranes investigated in this study. Conformational alterations of the membrane polyamide active skin layer were also evident as reflected by changes in surface roughness before and after chlorine exposure. Such alterations can either loosen or tighten the effective membrane pore size, leading to either a decrease or an increase in rejection. Both of these phenomena were observed in this study, although the decrease in the rejection of PhACs was overwhelming from exposure to highly concentrated hypochlorite solution.  相似文献   

6.
采用关键功能单体N,N'-二甲基间苯二胺(DMMPD)和多元酰氯5-氯甲酰氧基-异肽酰氯(CFIC)聚合制备了一种耐氧化的聚酰亚胺-氨酯(DMMPD-CFIC)反渗透复合膜材料. 研究了水相溶剂、 多元胺浓度和组成及两相接触时间等因素对DMMPD聚合成膜的影响. 结果表明, 虽然DMMPD-CFIC膜的脱盐率不够理想, 但将4-甲基间苯二胺(MMPD)与DMMPD以2∶1(质量比)组合后制得的MMPD/DMMPD-CFIC膜的脱盐率得到显著提高, 并且对膜的耐氯性能影响不大. 采用傅里叶衰减全反射红外光谱(FTIR)和X射线光电子能谱(XPS)分析了2种膜的活性层的结构, 并利用扫描电镜(SEM)和原子力显微镜(AFM)对膜的表面形态进行了表征.  相似文献   

7.
Hybrid organically bridged silica membranes have attracted considerable attention because of their high performances in a variety of applications. Development of robust reverse osmosis (RO) membranes to withstand aggressive operating conditions is still a major challenge. Here, a new type of microporous organosilica membrane has been developed and applied in reverse osmosis. Sol-gel derived organosilica RO membranes reject isopropanol with rejection higher than 95%, demonstrating superior molecular sieving ability for neutral solutes of low molecular weight. Due to the introduction of an inherently stable hybrid network structure, the membrane withstands higher temperatures in comparison with commercial polyamide RO membranes, and is resistant to water to at least 90 °C with no obvious changes in filtration performance. Furthermore, both an accelerated chlorine-resistance test and Fourier transform infrared analysis confirm excellent chlorine stability in this material, which demonstrates promise for a new generation of chlorine-resistant RO membrane materials.  相似文献   

8.
The effects of a water-permeable polymer coating on the performance and fouling of high-flux (ESPA1 and ESPA3) and low-flux (SWC4) polyamide reverse osmosis (RO) membranes were investigated. It was anticipated that the coating would create a smoother hydrophilic surface that would be less susceptible to fouling when challenged with a motor-oil/surfactant/water feed emulsion (used as a model foulant). AFM and FT-IR analyses confirm that a 1 wt.% polyether–polyamide (PEBAX® 1657) solution applied to ESPA and SWC4 membranes produces a continuous polymer coating layer and, thereby, provides smoother membrane surfaces. However, pure-water permeation data combined with a series-resistance model analysis reveal that the coating does not only cover the surface of the polyamide membrane, but also penetrates into its porous ridge-and-valley structure. During a long-term (106-day) fouling test with an oil/surfactant/water emulsion, the rate of flux decline was slower for coated than for uncoated membranes. This improvement in fouling resistance compensated for the decrease in permeate flux for SWC4 over a period of approximately 40 days. However, the coating material is believed to penetrate more deeply into the polyamide surface layer of the high flux, high surface area ESPA membranes relative to the low-flux SWC4, resulting in significant water flux reduction.  相似文献   

9.
Laboratory-scale colloidal fouling tests, comparing the fouling behavior of cellulose acetate and aromatic polyamide thin-film composite reverse osmosis (RO) membranes, are reported. Fouling of both membranes was studied at identical initial permeation rates so that the effect of the transverse hydrodynamic force (permeation drag) on the fouling of both membranes is comparable. Results showed a significantly higher fouling rate for the thin-film composite membranes compared to that for the cellulose acetate membranes. Addition of an anionic surfactant (sodium dodecyl sulfate, SDS) to mask variations in chemical and electrokinetic surface characteristics of the cellulose acetate and aromatic polyamide membranes resulted in only a small change in the fouling behavior. The higher fouling rate for the thin-film composite membranes is attributed to surface roughness which is inherent in interfacially polymerized aromatic polyamide composite membranes. AFM and SEM images of the two membrane surfaces strongly support this conclusion. These surface images reveal that the thin-film composite membrane exhibits large-scale surface roughness of ridge-and-valley structure, while the cellulose acetate membrane surface is relatively smooth.  相似文献   

10.
Thin film composite (TFC) membranes based polyamide were prepared with m-phenylenediamine (MPD), m-phenylenediamine-5-sulfonic acid (SMPD) and trimesoyl chloride (TMC) through interfacial polymerization technique on the polysulphone supporting film. The membranes were characterized using permeation experiments with salt water, attenuated total reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS) as well as scanning electronic microscopy (SEM). This study has shown that the active layer of TFC membrane is aromatic polyamide, including sulfuric acid function group (-SO3H) according to the result of ATR-IR and XPS. The NaCl rejection of RO membranes decreased and the flux increased when WSMPD/WMPD increased from 0 to 1, and the linear part with pendant -COOH in membrane barrier layer increased with the increase of SMPD content, but the surface of membrane becoming smoother and smoother with the increase of SMPD content. So the membranes performance mainly was determined by chemical structure in their barrier layer.  相似文献   

11.
以间苯二胺为原料, 与酰化剂甲酸反应制得中间体N,N'-二甲酰基间苯二胺, 再以NABH4-I2为还原剂合成得到产品N,N'-二甲基间苯二胺, 对合成工艺进行了优化, 并分析了还原机理, 化合物的结构经IR, 1H NMR和MS分析确定. 该法原料易得, 反应条件要求低, 收率高且成本更低.  相似文献   

12.
Recent studies have shown that membrane surface morphology and structure influence permeability, rejection, and colloidal fouling behavior of reverse osmosis (RO) and nanofiltration (NF) membranes. This investigation attempts to identify the most influential membrane properties governing colloidal fouling rate of RO/NF membranes. Four aromatic polyamide thin-film composite membranes were characterized for physical surface morphology, surface chemical properties, surface zeta potential, and specific surface chemical structure. Membrane fouling data obtained in a laboratory-scale crossflow filtration unit were correlated to the measured membrane surface properties. Results show that colloidal fouling of RO and NF membranes is nearly perfectly correlated with membrane surface roughness, regardless of physical and chemical operating conditions. It is further demonstrated that atomic force microscope (AFM) images of fouled membranes yield valuable insights into the mechanisms governing colloidal fouling. At the initial stages of fouling, AFM images clearly show that more particles are deposited on rough membranes than on smooth membranes. Particles preferentially accumulate in the “valleys” of rough membranes, resulting in “valley clogging” which causes more severe flux decline than in smooth membranes.  相似文献   

13.
The topmost polyamide (PA) layer of the thin-film-composite reverse osmosis (RO) membrane is the most important part in the membrane-based RO technology. With the aid of molecular dynamics simulations, many PA layer-related features in the RO process can be revealed. With many novel types of PA RO membranes out of trimesoyl chloride/m-phenylenediamine monomers developed in the laboratory, a convenient model building tool for these PA layer systems is urgently needed to conduct the theoretical analysis. Here, we develop a new universal toolkit for constructing PA RO membranes, named as MembrFactory, which combines flexibility of force fields and membrane compositions. A key characteristic of our approach is the use of monomers as the starting state, and the final membrane model was obtained automatically by stepwise reaction between the functional groups on the monomers. The reliability of MembrFactory has been validated by constructing several common PA RO membranes. © 2019 Wiley Periodicals, Inc.  相似文献   

14.
This paper aims to study the structure–property relationship and make several reasonable suggestions for tailoring special separation performance and surface properties of thin-film composite polyamide membranes. In the experiments, composite membranes of different thin films with small structural differences were prepared through interfacial polymerization of trimesoyl chloride (TMC), 5-isocyanato-isophthaloyl chloride (ICIC), and 5-chloroformyloxy-isophthaloyl chloride (CFIC) with m-phenylenediamine (MPD) separately, after which their reverse osmosis performances were evaluated by permeation experiment with salt aqueous solution, and film properties were characterized by AFM, SEM, XPS, ATR-IR, contact angle and streaming potential measurements. Chlorine stability was also studied through the evaluation of membrane performance before and after hypochlorite exposure. The results show that the polyacyl chloride structure strongly influences the reverse osmosis performance, surface properties and chlorine stability of the composite membranes; that the introduction of isocyanato group into polyacyl chloride improves the hydrophilicity, water permeability and surface smoothness of the thin-film composite membrane, and increases the absolute value of zeta potential at both low and high pH, but reduces the chlorine stability; and that the introduction of chloroformyloxy group increases the salt rejection rate and the surface roughness of the composite membrane, but lowers the water permeability.  相似文献   

15.
Effect of silane coupling agents on the performance of RO membranes   总被引:1,自引:0,他引:1  
This study investigates the effect of silane coupling agents on the performance of reverse osmosis (RO) membranes on the basis of sol–gel coating method. The surfaces of the RO membranes were chemically modified with four different alkoxysilanes in order to reduce their hydrophilicity. The objective of this study is to superpose hydrophobic polysiloxane layer on the surface of a polyamide TFC RO membrane and to increase the extent of salt rejection by the modified membranes. A commercial composite RO membrane (SWC1) was treated with silane coupling agents in ethanol at three different concentrations: 1.0, 1.5, and 2.0% (w/v). The silane coupling agents contain one alkyl or phenyl and three alkoxy groups (e.g., methyltriethoxysilane, octyltriethoxysilane, octadecyltrimethoxysilane and phenyltriethoxysilane). In addition, the effect of alkyl or phenyl group hydrophobicity on the permeability and salt rejection of the modified membrane was examined. The surfaces of the modified membranes were characterized by SEM, AFM, contact angle analyzer, and XPS in order to confirm successful sol–gel methods. The modified membranes showed significantly enhanced salt rejection without a decrease in flux. From the surface analysis results, we can observe the changes in the surface roughness, elemental composition, electron energy, and hydrophilicity.  相似文献   

16.
17.
Blend hydrophilic polyamide imide (PAI)-sulfonated poly (ether ether keton) (SPEEK) hollow fiber membranes were fabricated for oil-water emulsion separation. The structure and performance of the membranes were examined by FESEM analysis, N2 permeation, overall porosity, collapsing pressure, water contact angle, pure water flux, molecular weight cutoff (MWCO), and oil rejection tests. By studying ternary phase diagrams of polymer/solvent-additive/water system, the higher phase-inversion rate was confirmed for the solutions prepared at higher PAI/SPEEK ratio. A more open structure with larger finger-likes was observed by increasing PAI/SPEEK ratio. Mean pore size of 81 nm, overall porosity of 79% and water contact angle of 58° were obtained for the improved membrane prepared by PAI/SPEEK ratio of 85/15. Increasing SPEEK ratio resulted in lower mechanical stability in terms of collapsing pressure. Pure water flux of about 2.5 times of the plain PAI membrane was found for the improved membrane. MWCO of 460 kDa was found for the improved blend membrane. From oil rejection test, all the membranes demonstrated an oil rejection of over 95%. The improved membrane showed a lower rate of permeate flux reduction compared to the plain membrane which was related to the smaller fouling possibility. Less fouling resistance of the improved membrane was related to the higher flux recovery ratio (about 92%). For all the membranes, the dominant fouling mechanism was found to be the cake filtration. The improved PAI-SPEEK hollow fiber membranes was found to be practical for ultrafiltration of oily wastewaters.  相似文献   

18.
Polyamide/polyacrylonitrile thin‐film‐composite (TFC) nanofiltration (NF) membranes for the separation of oleic acid dissolved in organic solvents (methanol and acetone) were interfacially prepared by the reaction of trimesoyl chloride in an organic phase with an aqueous phase containing piperazine and m‐phenylene diamine. The interfacial reaction was confirmed by an investigation of the attenuated total reflection infrared spectrum. The surface morphology of the polyamide TFC membranes was examined with scanning electron microscopy. The hydrophilic properties of the membrane surfaces were conjectured on the basis of the ζ potential and contact angle. The effects of the monomer concentrations of the monomer blends (aliphatic and aromatic diamines) and drying times on various aspects of membrane performance, such as the solvents (water, alcohols, ketones, and hexane), permeation rates, and organic solute [poly(ethylene glycol) 200 and oleic acid] rejection rates, were investigated. All the membranes showed good solvent resistance. The polar solvent flux for water and methanol was higher than that for a nonpolar solvent (hexane). The membranes gave good rejection rates of oleic acid dissolved in methanol and acetone. The NF membranes were compared with various commercial membranes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2151–2163, 2002  相似文献   

19.
Reverse osmosis (RO) is a widely used and rapidly growing desalination technology. A major disadvantage of this process is that the concentrate from the RO process, which could be as much as 25% of the feed stream, represents a polluting stream. This waste stream could pose a significant challenge to the implementation of this process, particularly for inland communities which do not have the option of ocean disposal. An excellent environmentally benign approach to disposal could be beneficial reuse of the waste stream. This study presents two innovative beneficial reuse strategies for RO concentrate produced by an integrated membrane system (IMS) from a wastewater reclamation facility. The technologies evaluated in this study included bipolar membrane electrodialysis (BMED) for conversion of RO concentrate into mixed acid and mixed base streams, and electrochlorination (EC) for onsite chlorine generation. Bench-scale studies conducted with BMED demonstrated that RO concentrate could be desalted while producing mixed acids and mixed bases with concentrations as high as 0.2N. Similarly, the EC process was capable of producing a 0.6% hypochlorite solution from RO concentrate. The acids and bases as well as the hypochlorite produced could be directly applied to the RO process as well as upstream pre-treatment processes. A preliminary economic evaluation of the viability of these two approaches was conducted by conducting rough order of magnitude cost estimates based on the bench-scale performance of these processes on RO concentrate. A comparison of the overall costs of an Integrated Membrane System utilizing these innovative reuse strategies with conventional disposal options and thermal zero liquid discharge treatment is presented. This comparison indicates that a reuse approach might be economically viable for inland wastewater reuse facilities that utilize RO membranes and have limited options for concentrate disposal.  相似文献   

20.
For polyamide used in reverse osmosis (RO) membranes, the content of pendant acid groups is critical to its performance. In this work, FTIR was used to analyze the acid contents in the polyamide films prepared via interfacial polymerization of trimesic acid trichloride (TMC) in hexane and 1,3-phenylenediamine (MPDA) in water, and the effects of reaction conditions, including monomer concentrations, time, and temperature, were studied. It was found that more pendant acid groups are present in the polyamide film at higher TMC concentrations or lower MPDA concentrations, and longer reaction times and lower temperatures also favor the formation of the free acids. These results can be explained by the monomer diffusion in the interfacial polymerization process. This work may help the design and fabrication of RO membranes with different hydrophilicity and target performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号