首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous copper-doped ZnO thin films (ZnO:Cu) prepared on glass substrates by the radio-frequency magnetron co-sputtering have been investigated. Magnetic measurements indicated that the amorphous ZnO:Cu thin films were ferromagnetic at room temperature and the saturation magnetization was much higher than that of the polycrystalline films. X-ray diffraction results showed there was no Cu2O phase in amorphous ZnO:Cu films, which might be the reason for the high magnetic moment of the films. On the other hand, the high saturation magnetization of the amorphous ZnO:Cu films could also attribute to that there was no limit of solid solubility of Cu in amorphous ZnO solvent. The X-ray photoelectron spectroscopy study of the amorphous ZnO:Cu thin films reveal that copper was in Cu2+ chemical state.  相似文献   

2.
We present here new evidences of point defects enhanced ferromagnetism in Cu-doped ZnO thin films by different characterization methods. Cu-doped ZnO thin films with Cu concentrations ranging from 0.05 to 5 at.% were prepared by an inductively coupled plasma enhanced physical vapor deposition system. Room-temperature ferromagnetism is observed in all the films. The saturation magnetization shows an increasing trend with the increase of Cu concentration except a slight decrease for the 1 at.% Cu-doping. Further study performed by Raman spectra, X-ray absorption spectra and extended X-ray absorption fine structure indicate the existence of Cu2+ ions and point defects in all the films. The local structural characterization and magnetic properties reveal that the sample with larger saturation magnetization has a higher concentration of point defects.  相似文献   

3.
We report on room temperature ferromagnetism in C-doped ZnO thin films prepared by electron beam evaporation. Magnetization, Hall effect, X-ray photoemission spectroscopy (XPS) and X-ray diffraction studies have been conducted to investigate the source and nature of ferromagnetism in C-doped ZnO. The samples were observed to have n-type conduction with the carrier concentration increasing with C doping. XPS does not give any evidence for C substituted at the O site, and is more consistent with the formation of C-O bonds and with the presence of C primarily in the +4 state. It is suggested that the ferromagnetism originates in the development of Zn vacancies that are stabilized due to the incorporation of C in a high valence state (C4+).  相似文献   

4.
The positive temperature coefficient of resistance (PTCR) characteristics of Na2Ti6O13 (NT)-doped 0.94BaTiO3–0.06(Bi0.5Na0.5)TiO3 (BBNT) ceramics were investigated in order to evaluate the effect of NT as a new additive for lead-free PTCR thermistor application. The BBNT ceramic sintered at 1325°C exhibited a relatively high Curie temperature (T C ) of 158°C while its PTCR characteristic was not satisfactory for thermistor application. However, doping with NT significantly influenced the PTCR behavior of BBNT ceramic. It is considered that NT was responsible for grain growth of the BBNT by forming a liquid phase during sintering due to its low melting temperature of 1300°C. The grain growth resulted in the enhanced PTCR characteristics of BBNT ceramic. In particular, 0.1 mol% NT doped BBNT ceramic exhibited excellent PTCR performance of low resistivity at room temperature (1.6×102 Ω cm), resistivity increase near T C (1.28×104) and high T C of 158°C, suitable for lead-free PTCR thermistor application.  相似文献   

5.
Prasenjit Sen 《Pramana》2010,74(4):653-659
Electronic and magnetic structures of (1 0 0) films of K and Cs, having thicknesses of one to seven layers, are calculated within the plane-wave projector augmented wave (PAW) formalism of the density functional theory (DFT), using both local spin density approximation (LSDA) and the PW91 generalized gradient approximation (GGA). Only a six-layer Cs film is found to have a ferromagnetic (FM) state which is degenerate with a paramagnetic (PM) state within the accuracy of these calculations. These results are compared with those obtained from calculations on a finite-thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed.  相似文献   

6.
Present investigation reports the structural, optical and magnetic properties of co-doping of Co and N ions in ZnO samples, prepared by two distinct methods. In the first method, samples are synthesized by Sol–gel technique in which the Co and N are co-doped simultaneously during the growth process itself. In the second case, N ions are implanted in the Co doped ZnO thin films grown by Pulsed Laser Deposition (PLD). Structural studies showed that the nitrogen implantation on Co doped ZnO samples developed compressive stress in the films. X-ray photoelectron spectroscopy confirmed the doping of Co and N in ZnO matrix. In the Resonant Raman scattering multiple LO phonons up to fifth order are observed in the (Co, N) co-doped ZnO. Photoluminescence spectra showed that there is reduction in the bandgap due to the presence of Co in the lattice and also the presence of Zn vacancies in the films. All samples showed ferromagnetic behavior at room temperature. The magnetic moment observed in the implanted films is found to be varied with the different dosages of the implanted N ions. First principle calculations have been carried out to study the possible magnetic interaction in the co-doped system. Present study shows that the ferromagnetic interaction is due to the hybridization between N 2p and Co 3d states in the (Co, N) co-doped ZnO and is very sensitive to the geometrical configurations of dopants and the vacancy in the ZnO host lattice.  相似文献   

7.
Mn–N co-doped ZnO films with wurtzite structure were fabricated by RF magnetron sputtering together with the ion-implantation technique. Then a post-annealing at 650 °C for 10 min in a N2 atmosphere was performed to activate the implanted N+ ions and recover the crystal quality, and a p-type ZnO:Mn–N film with a hole concentration of about 2.1×1016 cm?3 was obtained. It is found that the Mn mono-doped ZnO film only exhibits paramagnetic behavior, while after N+-implantation, it shows ferromagnetism at 300 K, and the magnetization of the ZnO:Mn–N films can be further enhanced by thermal annealing due to the activation of the N acceptors. Our experimental results confirm that the codoping N acceptors are favorable for ferromagnetic ordering of Mn2+ ions in ZnO, which is consistent with the recent theoretical calculations.  相似文献   

8.
路忠林  邹文琴  徐明祥  张凤鸣 《中国物理 B》2010,19(5):56101-056101
This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on $a$-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become good conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16~$\mu _{\rm B}$/Co$^{2 + })$ in the Zn6110M, 7550P, 7280E, 7870Dhttp://cpb.iphy.ac.cn/CN/10.1088/1674-1056/19/5/056101https://cpb.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=111756Co-doped ZnO, diluted magnetic semiconductors, x-ray absorption fine structure, single crystalline thin filmsProject partially supported by National Science Foundation of China (Grant No.~10804017), National Science Foundation of Jiangsu Province of China (Grant No.~BK2007118), Research Fund for the Doctoral Program of Higher Education of China (Grant No.~20070286037), Cyanine-Project Foundation of Jiangsu Province of China (Grant No.~1107020060), Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu Province of China (Grant No.~1107020070) and New Century Excellent Talents in University (NCET-05-0452).This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on $a$-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become good conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16~$\mu _{\rm B}$/Co$^{2 + })$ in the Zn$_{0.95}$Co$_{0.05}$O single crystalline film with reducing annealing in the absence of Zn vapour, the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism (0.65~$\mu _{\rm B}$/Co$^{2 + })$ at room temperature. This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films, and the corresponding ferromagnetic mechanism is discussed.Co-doped;ZnO;diluted;magnetic;semiconductors;x-ray;absorption;fine;structure;single;crystalline;thin;filmsThis paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy.The as-grown films show high resistivity and non-ferromagnetism at room temperature,while they become more conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour.The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase.Compared with weak ferromagnetism(0.16 μB/Co2+) in the Zn0.95Co0.05O single crystalline film with reducing annealing in the absence of Zn vapour,the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism(0.65 μB/Co2+) at room temperature.This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films,and the corresponding ferromagnetic mechanism is discussed.  相似文献   

9.
Thin films of pure TiO2 have been prepared using both spin-coating and sputter-deposition techniques on sapphire and quartz substrates. The structural characteristics of the films have been investigated in detail using Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM). When annealed in vacuum, all films demonstrate room temperature ferromagnetism, while the air-annealed samples show much smaller, often negligible, magnetic moments. The magnetization of the vacuum-annealed sputtered samples depends on film thickness, with the volume magnetization decreasing monotonically with increasing thickness. Furthermore, the magnetization per unit area also decreases slightly with increasing film thickness. These results suggest that ferromagnetism in the vacuum-annealed TiO2 films is mediated by surface defects or interfacial effects, but does not arise from stoichiometric crystalline TiO2.  相似文献   

10.
An analysis is given of the voltage dependence of the cathodoluminescence of thin luminescent films, taking into consideration the surface recombination and diffusion processes of induced carriers. In the analysis Young's laws were used for the dissipation and range of incident cathode rays. The smooth maximum of experimental voltage response curves can be explained by strong surface recombination on the support.The author wishes to express his sincere thanks to Mr. Gy. Katona for his help in the computations.  相似文献   

11.
Both n- and p-type diluted magnetic semiconductor ZnCoO are made by magnetron co-sputtering with, respectively, dopants of Al and dual dopants of Al and N. The two sputtering targets are compound ZnCoO with 5% weight of Co and pure metal Al. Sputtering gases for n- and p-type films are pure Ar and N2, respectively. These films are magnetic at room temperature and possess free electron- and hole-concentration of 5.34×1020 and 5.27×1013 cm−3. Only the n-type film exhibits anomalous Hall-effect signals. Magnetic properties of these two types of films are compared and discussed based on measurements of microstructure and magneto-transport properties.  相似文献   

12.
Mn和N共掺ZnO稀磁半导体薄膜的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
使用对Zn2N3:Mn薄膜热氧化的方法成功制备了高含N量的Mn和N共掺ZnO的稀磁半导体薄膜.在没有N离子共掺的情况下,ZnO:Mn薄膜的铁磁性非常微弱;如果进行N离子的共掺杂,就会发现ZnO:Mn薄膜在室温下表现出非常明显的铁磁性,饱和离子磁矩为0.23 μB—0.61 μB.这说明N的共掺激发了ZnO:Mn薄膜中的室温铁磁性,也就是受主的共掺引起的空穴有利于ZnO中二价Mn离子的铁磁性耦合,这和最近的相关理论研究符合很好. 关键词: 磁性半导体 受主掺杂 空穴媒介的铁磁性  相似文献   

13.
Single crystalline ZnO films were grown on c-plane GaN/sapphire (0 0 0 1) substrates by molecular beam epitaxy. Cr+ ions were implanted into the ZnO films with three different doses, i.e., 1 × 1014, 5 × 1015, and 3 × 1016 cm−2. The implantation energy was 150 keV. Thermal treatment was carried out at 800 °C for 30 s in a rapid thermal annealing oven in flowing nitrogen. X-ray diffraction (XRD), atomic force microscopy, Raman measurements, transmission electron microscopy and superconducting quantum interference device were used to characterize the ZnO films. The results showed that thermal annealing relaxed the stress in the Cr+ ions implanted samples and the implantation-induced damage was partly recovered by means of the proper annealing treatment. Transmission electron microscopy measurements indicated that the first five monolayers of ZnO rotated an angle off the [0 0 0 1]-axis of the GaN in the interfacial layer. The magnetic-field dependence of magnetization of annealed ZnO:Cr showed ferromagnetic behavior at room temperature.  相似文献   

14.
Theory has predicted that high temperature ferromagnetism (FM) should be found in cubic fake-diamonds, Mn-doped ZrO2. Experimentally, it is shown that Mn-doped ZrO2 ceramics are not ferromagnetic, but the nanosized Mn-doped ZrO2 thin films grown on LaAlO3 substrates can be ferromagnets with TC above 400 K. The largest saturated magnetic moment (Ms) is huge as of about 230 emu/cm3 for the Mn0.05Zr0.95O2 films, and it decreases as the Mn content increases. The intrinsic FM is strongly associated with the cubic structure of Mn-doped ZrO2, and the Mn–Mn interactions via oxygen intermediates are important. No electrical conductivity is observed. Mn-doped ZrO2 thin films can be truly considered as excellent candidates for spintronic applications.  相似文献   

15.
Epitaxial films of ZnO doped with magnetic ion Fe and, in some cases, with 1% Al show clear evidence of room temperature ferromagnetic ordering. The Al doped optimized samples with carrier concentration nc∼8.0×1020 cm−3 show about 3 times enhanced saturation magnetization (0.58 μB/Fe2+) than the one with nc∼3.0×1020 cm−3 (0.18 μB/Fe2+). A clear correlation between the magnetization per transition metal ion and the ratio of the number of carriers to the number of donors have been found as is expected for carrier-induced room temperature ferromagnetism. The transport mechanism of the electrons in all the DMS films at low temperature range has been identified with the Efros's variable range hopping due to the electron-electron Coulomb interaction.  相似文献   

16.
Density-functional theory calculations are employed to investigate both the epitaxial growth and the magnetic properties of thin Mn and MnSi films on Si(001). For single Mn adatoms, we find a preference for the second-layer interstitial site. While a monolayer Mn film is energetically unfavorable, a capping-Si layer significantly enhances the thermodynamic stability and induces a change from antiferromagnetic to ferromagnetic order. For higher Mn coverage, a sandwiched Si-Mn thin film (with CsCl-like crystal structure) is found to be the most stable epitaxial structure. We attribute the strong ferromagnetic intralayer coupling in these films to Mn 3d-Si 3s3p exchange.  相似文献   

17.
A series of Zn1−xCoxO thin films with the atomic fraction, x, in the range of 0.03–0.10 were deposited on glass substrates at room temperature by magnetron co-sputtering technique and subsequently coupled with the post-annealing treatment for half hour at different temperatures (350 °C and 500 °C) under vacuum. A systematic study was done on the structural, optical and magnetic properties of Zn1−xCoxO thin films as a function of Co concentration and annealing temperature. X-ray diffraction and UV–vis spectroscopy results indicated that there are not any secondary phases and Co2+ substituted for Zn2+ of ZnO host. Magnetic hysteresis loops were observed at room temperature, indicating that both the as-deposited samples and the annealed ones exhibit the room temperature ferromagnetism. It was also found that the magnetic saturation moment per Co atom decreases with increasing Co concentration, while the post-annealing treatment can enhance the magnetic moment of the films effectively.  相似文献   

18.
As is known, the second approximation in the calculation of the partition function by the traces method of ferromagnetic thin films gives wrong results for the coordination number equal to eight. In order to obtain correct results even for this case, the third order approximation of the partition function is developed and thus the magnetic properties of body-centred cubic iron thin films are studied. The dependence of the Curie temperature on the thickness, for different values of the ratio between the anisotropy constant and the exchange energy between two neighbours, is discussed. A value can be chosen for this ratio such that the thin film becomes ferromagnetic only for a thickness greater than a definite value.
, . , , (Fe). . , - .
  相似文献   

19.
20.
The ion-bean-induced room temperature ferromagnetic ordering in pulsed laser deposited Ca-doped LaMnO3 thin films grown on Si (100) are presented in the present study. In addition to this, changes bought by the ion beam in structural, morphological and electrical properties are presented. Dense electronic excitation produced by high energy 120?MeV Ag9+ ion irradiation causes change in surface roughness, crystallinity and strain. It is also evident that these excitations induce the magnetic ordering in this system. The observed modifications are due to the large electronic energy deposited by swift heavy ion irradiation. The appearance of ferromagnetism at 300?K in these samples after irradiation may be attributed to the canting of the antiferromagnetically ordered spins due to the structural distortion. It is observed that the irradiated films show higher resistance than unirradiated films for all the compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号