首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New methods have been adopted for the anodic deposition of the different manganese and cobalt oxides. The deposition of the diferent oxides is usually carried out from their metal salt solutions in presence of a reducing agent. The oxides deposited are as follows: Mn2O3 from manganous sulphate in presence of boric, acid and formaldehyde at pH=5.5, Mn3O4 from manganous sulphate in presence of formic acid at pH=5.0 MnO from manganous sulphate-ammonium chloride solution in presence of telluric acid, Co2O3 from cobalt chloride in presence of telluric acid and sodium fluoride, Co3O4 from cobaltite in presence of formaldehyde and potassium chloride and finally CoO from cobalt chloride in presence of alcohol. The results of chemical analysis revealed that the purity of the oxides is 99.99% and their molecular formulae are MnO1.5, MnO1.33, MnO, CoO1.5, CoO1.33 and CoO respectively.  相似文献   

2.
New data on the structure and reversible lithium intercalation properties of sodium-deficient nickel–manganese oxides are provided. Novel properties of oxides determine their potential for direct use as cathode materials in lithium-ion batteries. The studies are focused on Na x Ni0.5Mn0.5O2 with x?=?2/3. Between 500 and 700 °C, new layered oxides Na0.65Ni0.5Mn0.5O2 with P3-type structure are obtained by a simple precursor method that consists in thermal decomposition of mixed sodium–nickel–manganese acetate salts obtained by freeze-drying. The structure, morphology, and oxidation state of nickel and manganese ions of Na0.65Ni0.5Mn0.5O2 are determined by powder X-ray diffraction, SEM and TEM analysis, and X-ray photoelectron spectroscopy (XPS). The lithium intercalation in Na0.65Ni0.5Mn0.5O2 is carried out in model two-electrode lithium cells of the type Li|LiPF6(EC:DMC)|Na0.65Ni0.5Mn0.5O2. A new structural feature of Na0.65Ni0.5Mn0.5O2 as compared with well-known O3–NaNi0.5Mn0.5O2 and P2–Na2/3Ni1/3Mn2/3O2 is the development of layer stacking ensuring prismatic site occupancy for Na+ ions with shared face on one side and shared edges on the other side with surrounding Ni/MnO6 octahedra. The reversible lithium intercalation in Na0.65Ni0.5Mn0.5O2 is demonstrated and discussed.  相似文献   

3.
The effect of transition metal oxides (Fe2O3, MnO2, Ni2O3 and Co2O3) on polystyrene/ammonium perchlorate propellant systems has been examined. The mechanism of action of the oxides in increasing the burning rate was examined by studying the effect of the oxides on the thermal decomposition and combustion of the oxidizer and the propellant. It has been concluded that one of the mechanisms by which the oxides act is by promoting the charge-transfer process, which is indicated by the enhancement of the electron-transfer process in ammonium perchlorate and by the correlation between the redox potential of the metal ions and the corresponding burning rates of the propellant.  相似文献   

4.
The collision induced fragmentation and reactivity of cationic and anionic nickel oxide clusters with carbon monoxide were studied experimentally using guided-ion-beam mass spectrometry. Anionic clusters with a stoichiometry containing one more oxygen atom than nickel atom (NiO2, Ni2O3, Ni3O4 and Ni4O5) were found to exhibit dominant products resulting from the transfer of a single oxygen atom to CO, suggesting the formation of CO2. Of these four species, Ni2O3 and Ni4O5 were observed to be the most reactive having oxygen transfer products accounting for approximately 5% and 10% of the total ion intensity at a maximum pressure of 15 mTorr of CO. Our findings, therefore, indicate that anionic nickel oxide clusters containing an even number of nickel atoms and an odd number of oxygen atoms are more reactive than those with an odd number of nickel atoms and an even number of oxygen atoms. The majority of cationic nickel oxides, in contrast to anionic species, reacted preferentially through the adsorption of CO onto the cluster accompanied by the loss of either molecular O2 or nickel oxide units. The adsorption of CO onto positively charged nickel oxides, therefore, is exothermic enough to break apart the gas-phase clusters. Collision induced dissociation experiments, employing inert xenon gas, were also conducted to gain insight into the structural properties of nickel oxide clusters. The fragmentation products were found to vary considerably with size and stoichiometry as well as ionic charge state. In general, cationic clusters favored the collisional loss of molecular O2 while anionic clusters fragmented through the loss of both atomic oxygen and nickel oxide units. Our results provide insight into the effect of ionic charge state on the structure of nickel oxide clusters. Furthermore, we establish how the size and stoichiometry of nickel oxide clusters influences their ability to oxidize CO, an important reaction for environmental pollution abatement.  相似文献   

5.
Non-enzymatic electrochemical sensors for the determination of hydrogen peroxide(H_2 O_2) have attracted more and more concerns.A series of nickel and cobalt double oxides(Ni_xCo_y-DO) with the different ratios of Ni/Co have been prepared by a polyol-mediated solvothermal method for H_2 O_2 detection.The obtained products exhibit honeycomb-like open porous microtubes constituted with the low-dimensional nanostructured Ni_xCo_y-DO blocks after the calcination treatment.Compared with nickel oxides,the introduced Co ions in Ni_xCo_y-DO can induce the production of surficial oxygen vacancies,and further enhance the electrode surface activity.In particular,the NiCo-DO sample(with an atomic ratio of Ni/Co=4:3) shows the richest surficial oxygen vacancies and presents the highest H_2 O_2 detection activity among all the as-prepared samples,demonstrating an excellent sensitivity of698.60 μAL mmol ~1 cm~(-2)(0~0.4 mmol/L),low detection limit(0.28 μmol/L,S/N=3),as well as long stability,high selectivity and good reproducibility.This work lends a new impetus to the potential application of double metal oxides for the next generation of non-enzymatic sensors.  相似文献   

6.
The reaction of nickel(II)chloride with γ-mercapto-propylamine in ethanolic solution gives the complex [Ni3(MPA)4]Cl2(MPA=NH2-(CH2)3-S). The complexes [Ni3(MPA)4]X2(X=Br, I, ClO4) can be synthesized from the chloride complex by addition of the sodium salt in aqueous solution. The crystal structure consists of discrete divalent trinuclear cations and chloride anions. Each sulphur atom of the ligand acts as a bridge between two nickel atoms, and the nitrogen atoms complete the coordination around the terminal nickel atoms. The geometry around the metal atoms is square-planar. The electronic and IR spectra of the complexes [Ni3(MPA)4]X2(X=Br, I, ClO4) indicate that all these compounds are composed of the [Ni3(MPA)4]2+ and X? ions.  相似文献   

7.
Ammonia synthesis by means of plasma over MgO catalyst   总被引:1,自引:0,他引:1  
Ammonia synthesis from H2-N2 mixed gas was studied at room temperature in a glow-discharge plasma in the presence of metals or metal oxides. Magnesia (MgO) and calcia (CaO), which are oxides with solid basicity, revealed catalytic activity in the plasma synthesis of ammonia, although they are catalytically inactive in industrial ammonia synthesis. The acidic oxides (Al2O3, WO3, and SiO2-Al2O3) lead to the consumption of the reactant, i.e., the H2-N2 mixed gas. No ammonia was isolated. Metal catalysts showed higher activity than the above basic oxides. They have, however, different activities. The reaction was faster over the active materials than over sodium chloride (NaCl) or glass wool or in a blank reactor without any catalyst.  相似文献   

8.
Rounded nanosize particles of Co3O4 and NiO were prepared by precipitation with ammonium carbonate from cobalt and nickel nitrate solutions. Cobalt and nickel oxides and their precursors were characterized by thermal and X-ray phase analyses, electron microscopy, and IR spectroscopy.  相似文献   

9.
Nickel‐cobalt oxide nano‐flakes materials are successfully synthesized by a facile chemical co‐precipitation method followed by a simple calcination process. The studies show that the as‐prepared nickel‐cobalt oxides with different Ni/Co ratio are composed of NiO and Co3O4 compounds. The Co0.56Ni0.44 oxide material, which exhibits a mesoporous structure with a narrow distribution of pore size from 2 to 7 nm, possesses markedly enhanced charge‐discharge properties at high current density compared with the pure NiO and pure Co3O4. The Co0.56Ni0.44 oxide electrode shows a specific capacitance value of 1227 F/g at 5 mA/cm2, which is nearly three times greater than that of the pure NiO electrode at the same current density.  相似文献   

10.
A nickel diphosphate with mixed cations, Na(NH4)[Ni3(P2O7)2(H2O)2] with a layered structure has been synthesized under hydrothermal conditions for the first time and characterized by single crystal X-ray diffraction, IR spectroscope and magnetization measurements. The structure consists of cis- and trans-edge sharing NiO6 octahedral chains linked via P2O7 units to [Ni3P4O16]2− layers. The ammonium and sodium cations are alternately located in the interlayer spaces. The mixed cations play an important role in the structural formation of this layered compound, leading to a new layer-stacking variant. The magnetic susceptibility obeys a Curie–Weiss law with μeff of 3.32 μB, showing the Ni2+ character and weak antiferromagnetic interactions.  相似文献   

11.
The new nickel selenite chloride, Ni5(SeO3)4Cl2, was obtained by high-temperature solid state reaction of NiCl2, Ni2O3 and SeO2 in a 1:2:4 molar ratio at 700 °C in an evacuated quartz tube. Its structure was established by single-crystal X-ray diffraction. Ni5(SeO3)4Cl2 crystallizes in the triclinic system, space group P-1 (No. 2) with cell parameters of a=8.076(2), b=9.288(2), c=9.376(2) Å, α=101.97(3), β=105.60(3), γ=91.83(3)° and Z=2. All nickel(II) ions in Ni5(SeO3)4Cl2 are octahedrally coordinated by selenite oxygens or/and chloride anions (([Ni(1)O5Cl], [Ni(2)O4Cl2], [Ni(3)O5Cl], [Ni(4)O6] and [Ni(5)O4Cl]). The structure of the title compound features a condensed three-dimensional (3D) network built by Ni(II) ions interconnected by SeO32− anions as well as Cl anions. Magnetic property measurements show strong antiferromagnetic interaction between nickel(II) ions.  相似文献   

12.
Some physico-chemical properties and reactivity in their reduction with hydrogen of NiO—Y2O3 mixed oxides prepared in a dry way have been studied using isothermal thermogravimetry in the range of 320–410°C and temperature-programmed reduction. It was found that addition of small amounts of chloride and acetate anions retarded the reduction of nickel oxide and accelerated the reduction of mixed oxides. The presence of oxalate and formate ions manifests itself by a small positive effect. Introduction of platinum activator or heat treatment of the samples in various atmospheres led to a pronounced increase in the reduction rate. The efficiency of the spill-over effect increases with increasing proportion of non-reducible Y2O3. The pre-irradiation of the samples by accelerated electrons and gamma rays at a dose of 1 MGy results in a negative kinetic effect only with the samples containing an excess of nickel oxide.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
Oxide-phosphate surface structures with thicknesses of 5 to 50 μm containing iron and nickel compounds have been synthesized by plasma electrolysis (PE) in aqueous electrolytes with polyphosphate nickel(II) and iron(III) complexes. The elemental and phase compositions have been studied as affected by polarization parameters, electrolytes, and annealing parameters. Simple and complex oxides and phosphates crystallize in layers: on aluminum, AlPO4, NiAl2O4, and Fe2O3 crystallize; on titanium, Ni2P2O7, Ni0.5TiOPO4, NaTi2(PO4)3, M(II)M(III)Ti(PO4)3, FePO4, and Fe2Fe(P2O7)2 crystallize.  相似文献   

14.
Column activated carbons were prepared from walnut shell chars and transition metal oxide powders (i.e. Co2O3, Ni2O3, CuO and V2O5) with blending method. Samples were characterized by N2 adsorption–desorption, X-ray diffraction, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The texture properties of all modified activated carbons with metal oxides dosage of <5 wt% did not change evidently. The basic functionalities of these activated carbons increased relative to blank carbon. Moreover, metal species with different oxidation states coexisted on the modified activated carbons. The optimal dosage of all metal oxides was 2 wt%. The sulfur capacities of these modified activated carbons were 7.7–46.0 % higher than that of blank activated carbon and the highest occurred for V2O5 modified activated carbon. The improved desulfurization performance was mainly attributed to the higher catalytic activity of the active metal oxides formed in the presence of O2 during the desulfurization process.  相似文献   

15.
The reduction of chromium, nickel, and manganese oxides by hydrogen, CO, CH4, and model syngas (mixtures of CO + H2 or H2 + CO + CO2) and oxidation by water vapor has been studied from the thermodynamic and chemical equilibrium point of view. Attention was concentrated not only on the convenient conditions for reduction of the relevant oxides to metals or lower oxides at temperatures in the range 400–1000 K, but also on the possible formation of soot, carbides, and carbonates as precursors for the carbon monoxide and carbon dioxide formation in the steam oxidation step. Reduction of very stable Cr2O3 to metallic Cr by hydrogen or CO at temperatures of 400–1000 K is thermodynamically excluded. Reduction of nickel oxide (NiO) and manganese oxide (Mn3O4) by hydrogen or CO at such temperatures is feasible. The oxidation of MnO and Ni by steam and simultaneous production of hydrogen at temperatures between 400 and 1000 K is a difficult step from the thermodynamics viewpoint. Assuming the Ni—NiO system, the formation of nickel aluminum spinel could be used to increase the equilibrium hydrogen yield, thus, enabling the hydrogen production via looping redox process. The equilibrium hydrogen yield under the conditions of steam oxidation of the Ni—NiO system is, however, substantially lower than that for the Fe—Fe3O4 system. The system comprising nickel ferrite seems to be unsuitable for cyclic redox processes. Under strongly reducing conditions, at high CO concentrations/partial pressures, formation of nickel carbide (Ni3C) is thermodynamically favored. Pressurized conditions during the reduction step with CO/CO2 containing gases enhance the formation of soot and carbon-containing compounds such as carbides and/or carbonates.  相似文献   

16.
Radiation-chemical reduction of Ni2+ ions in aqueous solutions of Ni(ClO4)2 containing sodium formate or isopropyl alcohol was studied, γ-Irradiation of deaerated solutions in the presence of polyethyleneimine, polyacrylate, or polyvinyl sulfate gives stable metal sols containing spherical particles 2–4 nm in diameter. The optical absorption spectra of nickel nanoparticles exhibit a band with a maximum at 215±5 nm (ε215=4.7·103 L mol−1 cm−1) and a shoulder at 350 nm. A mechanism for the radiation-chemical reduction of Ni2+ ions by hydrated electrons and organic radicals (CO2- radical anions in the case of HCOONa and Me2C·OH radicals in the case of PriOH). The redox potentials of the Ni2+/Ni0 and Ni+/Ni0 pairs (Ni0 is a nickel atom) are approximately −2.2 and −1.7 V, respectively. The nanoparticles are readily oxidized by O2, H2O2, and other oxidants. The reactions of these species with silver ions yield relatively stable nanoaggregates containing both nickel and silver in addition to silver nanoparticles. Published inIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 10, pp. 1733–1739, October, 2000.  相似文献   

17.
From the analysis of the impedance of nickel deposition, the electrode kinetics is shown to be dependent on the type of anion. In chloride electrolytes a slow electrode activation with cathodic polarization is predominant. In sulfate solutions a low-frequency capacitive feature, favored by a pH decrease, appears to result from interactions between the nickel and hydrogen discharges. An interpretation is proposed where the ad-ion NiadsI acts as both a reaction intermediate and a catalyst associated with a propagating kink site, and where the adsorbed species Hads*, generated by the presence of NiadsI, inhibit the hydrogen evolution. It is concluded that the active area is closely connected to the coverages by adsorbates.  相似文献   

18.
In order to accelerate the reaction rate of water splitting, it is of immense importance to develop low‐cost, stable and efficient catalysts. In this study, the facile synthesis of a novel rose‐like nanocomposite catalyst (Ni2P/Fe2P/Fe3O4) is reported. The synthesis process includes a solvothermal step and a phosphatization step to combine iron oxides and iron‐nickel phosphides. Ni2P/Fe2P/Fe3O4 performs well in catalyzing oxygen evolution reaction, with a very low overpotential of 365 mV to reach 10 mA cm?2 current density. The Tafel slope is as low as 59 mV dec?1. Ni2P/Fe2P/Fe3O4 has a large double‐layer capacitance that contributes to a high electrochemically active area. Moreover, this catalyst is very stable for long‐term use. Therefore, the Ni2P/Fe2P/Fe3O4 catalyst has a high potential for use in oxygen evolution reactions.  相似文献   

19.
Cathodic processes occurring in electrolytic deposition of molybdenum oxide from aqueous solutions of sodium molybdate in the presence of nickel(II) and thiosulfate ions were studied. Conditions for formation of cathodic deposits in the form of complex oxide systems Mo-Ni and Mo4O1 1-MoS2 were determined.  相似文献   

20.
Nickel titanate (NiTiO3) and nickel niobate (NiNb2O6), both with a cationic valence and conduction band, were examined for their photoelectrochemical properties. Applied as photoanode in a photoelectrochemical cell for water electrolysis, reduced pellets of these oxides show a photoresponse when irradiated in the optical band gap. The corresponding absorption is due to Ni2+ → Ti4+ and Ni2+ → Nb5+ charge-transfer transitions, respectively. These are situated at lower energy than the O2? → Ti4+ and O2? → Nb5+ charge-transfer transitions. The flatband potentials of both compounds were determined from photocurrent versus applied potential measurements. During reduction both compounds showed superficial decomposition. The effect of this decomposition on the photocurrents is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号