首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zr(SO3F)4, (A); ZrO(SO3F)2, (B); Zr(O2CCH3)2, (SO3F)2, (C); and Zr(O2CCH3)3SO3F, (D) have been prepared and characterized (elemental analysis,i.r. Spectra and thermal analysis). The SO3F groups are bidentate in (A) – (C) but have C3V symmetry in D where all the three oxygen atoms of SO3F group are coordinated in an equivalent manner. (A) – (D) are good Lewis acids and form coordination complexes with pyridine, triphenylphosphine oxide and 2,2′-bipyridyl. The thermal decomposition of the fluorosulphates is complex.  相似文献   

2.
Crystals of uranium (IV) oxalate hydrates, U(C2O4)2·6H2O (1) and U(C2O4)2·2H2O (2), were obtained by hydrothermal methods using two different U(IV) precursors, U3O8 oxide and nitric U(IV) solution in presence of hydrazine to avoid oxidation of U(IV) into uranyl ion. Growth of crystals of solvated monohydrated uranium (IV) oxalate, U(C2O4)2·H2O·(dma) (3), dma=dimethylamine, was achieved by slow diffusion of U(IV) into a gel containing oxalate ions. The three structures are built on a bi-dimensional complex polymer of U(IV) atoms connected through bis-bidentate oxalate ions forming [U(C2O4)]4 pseudo-squares. The flexibility of this supramolecular arrangement allows modifications of the coordination number of the U(IV) atom which, starting from 8 in 1 increases to 9 in 3 and, finally increases, to 10 in 2. The coordination polyhedron changes from a distorted cube, formed by eight oxygen atoms of four oxalate ions, in 1, to a mono-capped square anti-prism in 3 and, finally, to a di-capped square anti-prism in 2, resulting from rotation of the oxalate ions and addition of one and two water oxygen atoms in the coordination of U(IV). In 1, the space between the 2[U(C2O4)2] planar layers is occupied by non-coordinated water molecules; in 2, the space between the staggered 2[U(C2O4)2·2H2O] layers is empty, finally in 3, the solvate molecules occupy the interlayer space between corrugated 2[U(C2O4)2·H2O] sheets. The thermal decomposition of U(C2O4)2·6H2O under air and argon atmospheres gives U3O8 and UO2, respectively.  相似文献   

3.
Two tris(oxouranium)-substituted Keggin and Dawson sandwich-type tungstophosphate heteropolyanions Na12[(UO)3(H2O)6(PW9O34)2]·21 H2O (1) and Na18[(UO)3(H2O)6(P2W15O56)2]·27 H2O (2) have been prepared by reaction of uranium sulphate with [PW9O34]9− and [P2W15O56]12−, respectively, in aqueous media at 4.7 pH. The products were characterized by elemental and thermal analyses, IR, UV-Vis spectroscopy and magnetical susceptibility. The results of these studies suggest that the compounds obtained from Keggin and Dawson trilacunary anions are 2∶3 sandwich-type complexes and both exhibit a square antiprismatic stereochemistry for uranium(IV) with retention of polyoxometallate parent structure.  相似文献   

4.
As cesium hexanitratouranium(IV), Cs2U(NO3)6, has the same Cs:U stoichiometry as that of Cs2UO4, thermal decomposition of this nitrato complex in air and nitrogen was studied in detail as a possible alternate method of preparing pure Cs2UO4. The volatility of cesium nitrate, which is one of the intermediate products, changed this Cs:U ratio during thermal decomposition. Hence, only Cs2U2O7 was obtained on heating the sample to 775 K or higher. A scheme for the thermal decomposition of Cs2U(NO3)6 is given by combining the observed TG, XRD and IR data.  相似文献   

5.
Redox potentials: E(UO 2 2+ /UO 2 + )=60±4 mV/NHE, E(U4+/U3+)=–630±4mV/NHE measured at 25°C in acidic medium (HClO4 1M) using cyclic voltametry are in accordance with the published data. From 5°C to 55°C the variations of the potentials of these systems (measured against Ag/AgCl electrode) are linear. The entropies are then constant: [S(UO 2 2+ /UO 2 + )–S(Ag/AgCl)]/F=0±0.3 mV/°C, [S(U4+/U3+)–S(Ag/AgCl)]/F=1.5±0.3 mV/°C. From 5°C to 55°C, in carbonate medium (Na2CO3=0.2M), the Specific Ionic Interaction Theory can model the experimental results up to I=2M (Na+, ClO 4 , CO 3 2– ): E(UO2(CO3) 3 4– /UO2(CO3) 3 5– )=–778±5 mv/NHE (I=0, T=25°C, (25°C)=(UO2(CO3) 3 4– , Na+)–(UO2(CO3) 3 5– , Na+)=0.92 kg/mole, S(UO2(CO3) 3 4– /UO2(CO3) 3 5– =–1.8±0.5 mV/°C (I=0), =(Cl, Na+)=(1.14–0.007T) kg/mole. The U(VI/V) potential shift, between carbonate and acidic media, is used to calculate (at I=0,25°C):
  相似文献   

6.
Seven new mixed oxochalcogenate compounds in the systems MII/XVI/TeIV/O/(H), (MII = Ca, Cd, Sr; XVI = S, Se) were obtained under hydrothermal conditions (210 °C, one week). Crystal structure determinations based on single‐crystal X‐ray diffraction data revealed the compositions Ca3(SeO4)(TeO3)2, Ca3(SeO4)(Te3O8), Cd3(SeO4)(Te3O8), Cd3(H2O)(SO4)(Te3O8), Cd4(SO4)(TeO3)3, Cd5(SO4)2(TeO3)2(OH)2, and Sr3(H2O)2(SeO4)(TeO3)2 for these phases. Peculiar features of the crystal structures of Ca3(SeO4)(TeO3)2, Ca3(SeO4)(Te3O8), Cd3(SeO4)(Te3O8), Cd3(H2O)(SO4)(Te3O8), and Sr3(H2O)2(SeO4)(TeO3)2 are metal‐oxotellurate(IV) layers connected by bridging XO4 tetrahedra and/or by hydrogen‐bonding interactions involving hydroxyl or water groups, whereas Cd4(SO4)(TeO3)3 and Cd5(SO4)2(TeO3)2(OH)2 crystallize as framework structures. Common to all crystal structures is the stereoactivity of the TeIV electron lone pair for each oxotellurate(IV) unit, pointing either into the inter‐layer space, or into channels and cavities in the crystal structures.  相似文献   

7.
Uranyl vanadate compounds with divalent cations, M(UO2)(V2O7) (M = Ca, Sr) and Sr3(UO2)(V2O7)2, were synthesized by flux crystal growth, and their crystal structures were solved using single‐crystal X‐ray diffraction data. Ca(UO2)V2O7 and Sr(UO2)V2O7 were synthesized from reactants with molar ratios M:U:V of 1:1:2 and identical heating conditions, and increasing the M:U:V ratio to 3:1:4 resulted in Sr3(UO2)(V2O7)2. Crystallographic data for M(UO2)V2O7 compounds are: a = 7.1774(18) Å, b = 6.7753(17) Å, c = 8.308(2) Å; V = 404.01(18) Å3; space group Pmn21, Z = 2 for Ca; a = 13.4816(11) Å, b = 7.3218(6) Å, c = 8.4886(7) Å; V = 837.91(12) Å3; space group Pnma, Z = 4 for Sr. Compound Sr3(UO2)(V2O7)2 has a = 6.891(3) Å, b = 7.171(3) Å, c = 14.696(6) Å, α = 85.201(4)?, β = 78.003(4)?, γ = 89.188(4)?; V = 707.9(5) Å3; space group P1 , Z = 2. The framework structure of Sr(UO2)(V2O7) is related to that of Pb(UO2)(V2O7) reported previously, while that of Ca(UO2)(V2O7) has a different topology. The topological polymorphism of the [(UO2)(V2O7)]‐type framework may be due to the differing ionic radii of the guest M2+ cations. Compound Sr3(UO2)(V2O7)2 has a modular structure based on two different types of electroneutral layers: [Sr(UO2)(V2O7)] and [Sr2(V2O7)]. Structural complexities were calculated, and Raman spectra were collected and their peaks were assigned.  相似文献   

8.
The extraction behavior of U(VI) and Th(IV) with tri-isoamyl phosphate–kerosene (TiAP–KO) from nitric acid medium was investigated in detail using the batch extraction method as a function of aqueous-phase acidity, TiAP concentration and temperature, then the thermodynamic parameters associated with the extraction were derived by the second-law method. It could be noted that the distribution ratios of U(VI) or Th(IV) increased with increasing HNO3 concentration until 6 or 5 M from 0.1 M. However, a good separation factor (D U(VI)/D Th(IV)) of 88.25 was achieved at 6 M HNO3, and the stripping of U(VI) from TiAP–KO with deionized water or diluted nitric acid was easier than that of Th(IV). The probable extracted species were deduced by log D-log c plot at different temperatures as UO2(NO3)2·(TiAP)(1–2) and Th(NO3)4·(TiAP)(2–3), respectively. Additionally, △H, △G and △S for the extraction of U(VI) and Th(IV) revealed that the extraction of U(VI) by TiAP was an exothermic process and was counteracted by entropy change, while the extraction of Th(IV) was an endothermic process and was driven by entropy change.  相似文献   

9.
The influence of NaClO4, Na2SO4, Ce2(SO4)3, H2SO4, and HClO4 on the oxidation of Tl(I) by Ce(IV) in the presence of Mn(IV) as a catalyst was investigated. It was found that in the presence of NaClO4 and HClO4 the existence of CeSO4 2+ facilitated the reaction progress. An increase of the SO4 2– concentration favours the formation of negative complexes of Ce(IV) and Ce(III) such as Ce(SO4)3 2–, HCe(SO4)3-, and Ce(SO4)2- inhibiting the course of the reaction.

Mit 2 Abbildungen  相似文献   

10.
Sladkov V 《Electrophoresis》2010,31(20):3482-3491
The uranyl–selenium(IV) and uranyl–selenium(VI) interactions were studied by CE in aqueous acid solutions, containing U(VI) and Se(IV) or Se(VI) at different concentrations, at pH 1.5, 2.0 and 2.5. The method proposed in this paper allows one with the use of CE data on metal ion mobilities at different pHs to establish the ligand species interacting with metal ion and complex species formed. In the case of Se(VI) a selenate, as demonstrated, interacts with uranyl ions, in the case of Se(IV) this is a hydroselenite. It was also shown that the equilibria for the U(VI)–Se(VI) and U(VI)–Se(IV) systems can be established from CE data. The formation of UO2SeO4, UO2(SeO4), UO2HSeO and UO2(HSeO3)2 species is demonstrated. The stability constant values were measured at different ionic strengths (from 0.02 to 0.2 mol/L). The logarithms of the stability constant values (β°) extrapolated to ionic strength 0 by the specific ion interaction theory (SIT) are found to be log β°1=2.93±0.06 for UO2SeO4 formation, log β°2=4.030.18 for UO2(SeO4) formation, log β°1=3.270.15 for UO2HSeO formation and log β°2=5.510.11 for UO2(HSeO3)2 at 25°C. The results for the first constant values for each of systems are consistent with the published values. For UO2(SeO4) formation, a new constant stability value is given. The existence of UO2(HSeO3)2 complex species is demonstrated and its constant stability value is given for the first time.  相似文献   

11.
Two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6 have been obtained by solid state chemistry . The crystal structures were determined by single crystal X-ray diffraction data, collected with MoKα radiation and a charge coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least square method on the basis of F2 for all unique reflections, with R1=0.046 for 136 parameters and 1412 reflections with I?2σ(I) for K2(UO2)2(MoO4)O2 and R1=0.055 for 257 parameters and 2585 reflections with I?2σ(I) for K8(UO2)8(MoO5)3O6. The first compound crystallizes in the monoclinic symmetry, space group P21/c with a=8.250(1) Å, b=15.337(2) Å, c=8.351(1) Å, β=104.75(1)°, ρmes=5.22(2) g/cm3, ρcal=5.27(2) g/cm3 and Z=4. The second material adopts a tetragonal unit cell with a=b=23.488(3) Å, c=6.7857(11) Å, ρmes=5.44(3) g/cm3, ρcal=5.49(2) g/cm3, Z=4 and space group P4/n.In both structures, the uranium atoms adopt a UO7 pentagonal bipyramid environment, molybdenum atoms are in a MoO4 tetrahedral environment for K2(UO2)2(MoO4)O2 and MoO5 square pyramid coordination in K8(UO2)8(MoO5)3O6. These compounds are characterized by layered structures. The association of uranyl ions (UO7) and molybdate oxoanions MoO4 or MoO5, give infinite layers [(UO2)2(MoO4)O2]2− and [(UO2)8(MoO5)3O6]8− in K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6, respectively. Conductivity properties of alkali metal within the interlayer spaces have been measured and show an Arrhenius type evolution.  相似文献   

12.
Reaction Of UO2(O2CCH3)2 with pentafluorobenzoic acid yields UO2(O2CC6F5)2, which has been converted into the solvated complexes UO2(O2CC6F5)2L2·S [L2 = 2,2′-bipyridyl (bpy), S = 0.33 (PhH) or 0.07 (t-BuOH); L = Ph3PO, S = t-BuOH; L = Ph3AsO, S = 0.40 (t-BuOH)] and the solvent free UO2(O2CC6F5)2L2 [L2 = bpy; L = Ph3PO]. The crystal structure of UO2(O2CC6F5)2bpy (orthorhombic, space group P212121; a = 18.45(2), b = 18.94(2), c = 7.069(8) Å, Z = 4] reveals distorted hexagonal bipyramidal stereochemistry with a trans UO2 group, chelating pentafluorobenzoate ligands, and chelating 2,2′-bipyridyl, which is significantly displaced from the hexagonal plane. The structure of UO2(O2CC6F5)2(OPPh3)2·t-BuOH [rhombohedral, space group R3; a = 21.51(3) Å, α = 117.28(5)°, Z = 3] shows trans UO2, pseudo trans Ph3PO ligands, and one unidentate and one disordered chelating pentafluorobenzoate ligand, whilst t-BuOH could not be located because it is highly disordered. Relationships between ν (CO2) frequencies and the carboxylate coordination are discussed, and UO2(O2CC6F5)2(OAsPh3)2.0.40 (t-BuOH) is considered to have stereochemistry similar to that of the phosphine oxide complex. The complexes undergo decarboxylation in dimethyl sulphoxide yielding pentafluorobenzene and carbonatodioxouranium(VI) species not UO2(C6F5)2 derivatives.  相似文献   

13.
Four complexes containing the [UO2(oda)2]2− anion (oda is oxydiacetate) are reported, namely dipyridinium dioxidobis(oxydiacetato)uranate(VI), (C5H6N)2[U(C4H4O5)2O2], (I), bis(2‐methylpyridinium) dioxidobis(oxydiacetato)uranate(VI), (C8H8N)2[U(C4H4O5)2O2], (II), bis(3‐methylpyridinium) dioxidobis(oxydiacetato)uranate(VI), (C8H8N)2[U(C4H4O5)2O2], (III), and bis(4‐methylpyridinium) dioxidobis(oxydiacetato)uranate(VI), (C8H8N)2[U(C4H4O5)2O2], (IV). The anions are achiral and are located on a mirror plane in (I) and on inversion centres in (II)–(IV). The four complexes are assembled into three‐dimensional structures via N—H...O and C—H...O interactions. Compounds (III) and (IV) are isomorphous; the [UO2(oda)2]2− anions form a porous matrix which is nearly identical in the two structures, and the cations are located in channels formed in this matrix. Compounds (I) and (II) are very different from (III) and (IV): (I) forms a layered structure, while (II) forms ribbons.  相似文献   

14.
175, 181Hafnium(IV) was extracted by HDBP in 2-ethylhexanol from 1–10M solutions of HClO4, HCl and HNO3, and 1–8M H2SO4. As with low polar organic phase diluents, the acidity dependence of the distribution ratio of Hf, D, passes through a minimum for HClO4, HCl, and H2SO4 whereas only an increase of D can be observed with increasing HNO3 concentration. From the slope analysis the following complexes were found to be extracted (HDBP=HA): HfA4 at <4M HClO4 and <5M HCl, lg Kextr=9, HfX4(HA)4 (X=ClO 4 , Cl or NO 3 ) at >5M HClO4, >7M HCl and 1–10M HNO3, Hf(SO4)A2(HA)3–4 at <3M H2SO4, and Hf(SO4)2 (HA)4 at >6M H2SO4. Coextraction of sulphate with hafnium from H2SO4 solutions was evidenced in experiments with macro concentrations of Hf(IV) and35SO 4 2− . Part XX: Coll. Czech. Chem. Commun., 40 (1975) 3617.  相似文献   

15.
New uranyl vanadates A3(UO2)7(VO4)5O (M=Li (1), Na (2), Ag (3)) have been synthesized by solid-state reaction and their structures determined from single-crystal X-ray diffraction data for 1 and 3. The tetragonal structure results of an alternation of two types of sheets denoted S for 2[UO2(VO4)2]4− and D for 2[(UO2)2(VO4)3]5− built from UO6 square bipyramids and connected through VO4 tetrahedra to 1[U(3)O5-U(4)O5]8− infinite chains of edge-shared U(3)O7 and U(4)O7 pentagonal bipyramids alternatively parallel to a- and b-axis to construct a three-dimensional uranyl vanadate arrangement. It is noticeable that similar [UO5]4− chains are connected only by S-type sheets in A2(UO2)3(VO4)2O and by D-type sheets in A(UO2)4(VO4)3, thus A3(UO2)7(VO4)5O appears as an intergrowth structure between the two previously reported series. The mobility of the monovalent ion in the mutually perpendicular channels created in the three-dimensional arrangement is correlated to the occupation rate of the sites and by the geometry of the different sites occupied by either Na, Ag or Li. Crystallographic data: 293 K, Bruker X8-APEX2 X-ray diffractometer equipped with a 4 K CCD detector, MoKα, λ=0.71073 Å, tetragonal symmetry, space group Pm2, Z=1, full-matrix least-squares refinement on the basis of F2; 1,a=7.2794(9) Å, c=14.514(4) Å, R1=0.021 and wR2=0.048 for 62 parameters with 782 independent reflections with I?2σ(I); 3, a=7.2373(3) Å, c=14.7973(15) Å, R1=0.041 and wR2=0.085 for 60 parameters with 1066 independent reflections with I?2σ(I).  相似文献   

16.
The single crystals of (C2H7N4O)2[UO2(C2O4)2(H2O)] were studied by X-ray diffraction. The crystals are monoclinic, space group Pn, Z = 2, unit cell parameters: a = 9.4123(2) Å, b = 8.4591(2) Å, c = 11.8740(3) Å, β = 105.500(10)°, V = 911.02(4) Å3. The main structural units of the crystals of I are islet complex groups [UO2(C2O4)2(H2O)]2? corresponding to the crystal chemical group AB 2 01 M1 (A = UO UO 2 2+ , B01 = C2O 4 2? , M = H2O) of uranyl complexes. Uranium-containing mononuclear complexes are connected into a three-dimensional framework through the electrostatic interactions and hydrogen bonding system involving carbamyolguanidinium ions.  相似文献   

17.
Two new solid‐state uranium(IV) sulfate x‐hydrate complexes (where x is the total number of coordinated plus solvent waters), namely catena‐poly[[pentaaquauranium(IV)]‐di‐μ‐sulfato‐κ4O:O′] monohydrate], {[U(SO4)2(H2O)5]·H2O}n, and hexaaquabis(sulfato‐κ2O,O′)uranium(IV) dihydrate, [U(SO4)2(H2O)6]·2H2O, have been synthesized, structurally characterized by single‐crystal X‐ray diffraction and analyzed by vibrational (IR and Raman) spectroscopy. By comparing these structures with those of four other known uranium(IV) sulfate x‐hydrates, the effect of additional coordinated water molecules on their structures has been elucidated. As the number of coordinated water molecules increases, the sulfate bonds are displaced, thus changing the binding mode of the sulfate ligands to the uranium centre. As a result, uranium(IV) sulfate x‐hydrate changes from being fully crosslinked in three dimensions in the anhydrous compound, through sheet and chain linking in the tetra‐ and hexahydrates, to fully unlinked molecules in the octa‐ and nonahydrates. It can be concluded that coordinated waters play an important role in determining the structure and connectivity of UIV sulfate complexes.  相似文献   

18.
In the article “Competitive Coordination of the Uranyl ion by Perchlorate and Water – The Crystal Structures of UO2(ClO4)2·3H2O and UO2(ClO4)2·5H2O and a Redetermination of UO2(ClO4)2·7H2O” (Z. Anorg. Allg. Chem. 2003 , 629, 1012–1016), some wrong parameters and bond lengths for UO2(ClO4)2·7H2O were given in table 1 and table 3 The correct parameters are: a = 1449.5(2) pm, b = 921.6(1) pm, c = 1067.5(2) pm, V = 1422.5(4)·106 pm3, ρ = 2.712 g·cm?3, μ = 119 cm?1. The corrected bond lengths for this structure are U–O(1) 175.8(5) pm, U–O(2) 239.1(5) pm, U–O(3) 240.8(5), U–O(4) 242.0(7). A cif file with the correct data has been deposited with the ICSD.  相似文献   

19.
Extraction behavior of U(VI) and Th(IV) from nitric acid medium is investigated using organo-phosphorous extractant, tri(butoxyethyl) phosphate in n-paraffin at room temperature (27 ± 1 °C). The effect of diluents, nitric acid concentration as well as extractant concentration on extraction of U(VI) and Th(IV) are evaluated. Extraction of U(VI) and Th(IV) from nitric acid medium proceeds via solvation mechanism. Slope analysis technique showed the formation of neutral complexes of the type of UO2(NO3)2·2TBEP and Th(NO3)4·3TBEP with U(VI) and Th(IV) respectively in the organic phase. The FTIR data showed shifting of P=O stretching frequency from 1,282 to 1,217 cm−1 indicating the strong complexation of P=O group with UO2 2+ ions in the organic phase. Effect of stripping agents, other metal ions and their separation with respect to U(VI) extraction has also been investigated.  相似文献   

20.
Uranyl–sulphate complexes are the predominant U(VI) species present in acid solutions resulting either from underground uranium ore leaching or from the remediation of leaching sites. Thus, the study of U(VI) speciation in these solutions is of practical significance. The spectra of UO2(NO3)2 + Na2SO4 solutions of different Φ S = [SO42−]/[U(VI)] ratio at pH = 2 were recorded for this purpose. As the presence of uranyl-nitrate complexes should be expected under these experimental conditions, the spectra of UO2(NO3)2 + NaNO3 solutions with different Φ N = [NO3]/[U(VI)] ratio at pH = 2 were also measured. The effects of Φ S and Φ N ratios value were most pronounced in wavelength interval 380–500 nm. Therefore, these parts of experimental overall spectra were used for deconvolution into the spectra of individual species by the method proposed. It enabled to calculate stability constants of anticipated species at zero ionic strength. The Specific Ion Interaction Theory (SIT) was used for this purpose. Stability constants of UO2SO4, UO2(SO4)22−, UO2NO3 + and UO2(NO3)2 coincided well with published data, but those for UO2(SO4)34− and UO2(NO3)3 were significantly lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号