首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enthalpies of the reactions 1 and 2 have been determined as ΔH = Pt(PPh3)2(CPhCPh)cryst. + HClg → Pt(PPh3)2(Cl)(CPhCHPh)cryst. (1) Pt(PPh3)2(CPhCPh)cryst. + 2HClgcis-Pt(PPh3)2Cl2cryst. + trans-CHPhCHPhg (2) ?90.2 ± 6 and ΔH = ?139.0 ± 16 kJ mol?1, respectively; dissociation energies of bonds involving platinum are expressed by the relationship: 41 kJ mol?1 + D(Pt-tolane) = 2D(PtCPhCHPh) = {D1(PtCl) + D2(PtCl)} ?350 kJ mol?1  相似文献   

2.
3-Phenyl- and 3-p-bromophenyl-thiete 1,1-dioxides react with [Pt(trans-stilbene)(PPh3)2] and [Pt(AsPh3)4] to give the complexes [Pt(CHCrCH2SO2)(MPh3)2] (R  Ph, p-BrC6H4; M P, As).  相似文献   

3.
The enthalpy of the reaction: Pt(PPh3)2(CH2CH2)(cryst.) + CS2(g) → Pt(PPh3)2(CS2)(cryst.) + CH2CH2(g) has been determined as ΔH = ? 4.40 ± 2.2 kJ mol?1 from solution calorimetry, and the bond dissociation energy D(PtCS2) shown to be slightly greater than D(PtC2H4).  相似文献   

4.
The complexes [IrH(CO)(PPh3)3], trans-[IrCI(CO)- (PPh3)2], [RhH(PPh3)4], [Pd(PPh3)4], [Pt(trans-stilbene)(PPh3)2] and [Pt(η3-CH2-COCH2)-(PPh3)2] catalyse the rearrangement of Me3SiCH2C(O)CH2Cl to CH2?C(OSiMe3)-CH2Cl.  相似文献   

5.
Reaction of carbon diselenide in 3 to 1 molar ratio, and areneselenols in equimolar ratio, with trans-IrCl(CO)(PPPh3)2 and PtL4, gives oxidative addition products, IrCl(CO)CSe2)(PPh3)2, Pt(CSe2)L2, IrHCl(CO)(SeC6H4Me-p)(PPh3)2, and PtH(SeR)L2, respectively (R = Ph and p-MeC6H4; L = PPh3 and PPh2Me). However, reactions of PtL4 with an excess of areneselenols afford bis(arylselenide) complexes Pt(SeR)2L2. The configurations of these complexes are discussed on the basis of their IR and PMR spectra. The carbon diselenide adducts are suggested to have configurations similar to the corresponding carbon disulfide adducts. The platinum hydrides are found to exist as a mixture of cis and trans isomers in solution, both the isomers being labile with regard to dissociative exchange of the tertiary phosphine ligands. The trans configurations of Pt(SeR)2(PPh2Me)2 are unambiguously shown by the virtually coupled triplet pattern of the PPh2Me signals.  相似文献   

6.
Reactions of alloxan (all) with [PtL(PPh3)2] (L′= trans-stilbene, L″ diphenylacetylene) afford the side-bonded ketone complex [Pt(all)(PPh3)2] which may also be obtained from the hydrate of alloxan and [PtL′(Pph3)2]. Similarly diethyl oxomalonate (dio) and [Pt(PPh3)4] afford a side-bonded ketone complex [Pt(dio)(PPh3)2]. Reaction of isatin with [Pt(PPh34] gives trans-[PtH{NCO(o-C6H4)CO}(PPh3)2] and benzoyl cyanide and [PtL′(PPh3)2] give cis-[Pt(CN)(COPh3)2] and trans-[Pt(CN)2(PPh2)2].  相似文献   

7.
The enthalpy, ΔH = ?64.7 ± 4 kJ mol?1, for the reaction Pt(PPh3)2(η-C2H4)(s) + pcbd(g) → Pt(PPh3)2(η-pcbd)(s) + C2H4(g) where pcbd is 3-phenylcyclobutene-1,2-dione,
, has been measured calorimetrically. The Ptolefin bond in this complex is slightly stronger than that in Pt(PPh3)2(η-PhCHCH2).  相似文献   

8.
The enthalpy of the reaction: Pt(PPh3)2 (CH2CH2)(cryst.) + C(CN)2C(CN)2 (g) → Pt(PPh3)2 {C(CN)2C(CN)2}(cryst.) + CH2 CH2 (g) has been determined as ΔH298=?155.8±8.0 kJ·mol?1, from solution calorimetry. The interpretation, that the platinumethylene bond is much weaker than the platinumtetracyanoethylene bond, is contrary to conclusions drawn recently from electron emission spectroscopic studies, but in agreement with available structural data.  相似文献   

9.
The reaction of [Pt(PEt3)3] with CH2I2 affords trans-[Pt(CH2PEt3)I(PEt3)2]I and is believed to proceed via the α-functionalised alkyl cis-[Pt(CH2I)I(PEt3)2], because similar ylides are obtained from cis- or trans-[PT(CH2X)(PPh3)2X] (XCl, Br, or I) with PR3 (PEt3, PBu3n, PMePh2, PEtPh2, or PPh3); cis-[Pd(CH2I)-I(PPh3)2] does not react with excess PPh3, but with PEt3 yields trans-[Pd(CH2PEt3)I(PPh3)2]I; the X-ray structure of trans-[Pt(CH2PEt3)I(PEt3)2]I (current R = 0.045) shows PtP(1) 2.332(7), PtP(2) 2.341(8), PtC 2.08(2), and PtI 2.666(2) Å, and angles (a) C(1)PtI, P(1), P(2): 176.9(8), 91.6(6), 93.4(6), (b) IPtP(1), P(2): 87.1(2), 88.5(2), and (c) P(1)P(2), 166.8(3), and (d) PtC(1)P(3), 118(1)°.  相似文献   

10.
The abstraction of chloride from trans-Pt(COCOOMe)(Cl)(PPh3)2 (1) by Ag(CF3SO3) yields methoxyoxalyl triflato complex trans-Pt(COCOOMe)(OTf)(PPh3)2 (2). Attempts to crystallize the triflato product in CH2Cl2/n-hexane under ambient conditions result in an cationic aquo complex, trans-[Pt(COCOOMe)(OH2)2](CF3SO3 (3). Its oxalyl carbonyls are disposed in an unprecedented nearly planar s-cis configuration in the solid-state structure.  相似文献   

11.
Treatment of trans-Pt(COCOPh)(Cl)(PPh3)2 (1a) with AgBF4in THF led to the formation of a metastatic complex trans-[Pt(COCOPh)(THF)(PPh3)2](BF4) (2) which readily underwent ligand substitution to give a cationic aqua complex trans-[Pt(COCOPh)(OH2)(PPh3)2](BF4) (5a). Complex 5a has been characterized spectroscopically and crystallographically. Analogous reaction of trans-Pt(COCOOMe)(Cl)(PPh3)2 (1b) with Ag(CF3SO3) in dried CH2C12 was found first to yield a methoxyoxalyl triflato complextrans-Pt(COCOOMe)(OTf)(PPh3)2 (6). Attempts to crystallize the triflato product in CH2-cl2hexane under ambient conditions also afforded an aqua complex of the triflate salt f/wu-[Pt(COCOOMe)(OH2)(PPhj)2](CF3SO3) (5b). Complex 5a in a noncoordinating solvent such as CH2C12 or CHCl3 suffered spontaneous decarbonylation to form first cis-[Pt(COPh)(CO)(PPh3)2l(BF4) (3a) then the thermodynamically stable isomer trans-[Pt(COPh)(CO)(PPh3)2](BF4) (3b). Crystallization of complex 3b under ambient conditions resulted in an aqua benzoyl complex trans-[Pt(COPh)(OH2)(PPh3)2](BF4) (7). The replacement of the H2O ligand in complex 7 by CO was done simply by bubbling CO into the solution of 7. The single crystal structures of 5b and 7 have been determined by X-ray diffraction. The distances of the Pt-O bonds in 5a, 5b, and 7 support that the aqua ligand is a weak donor in such cationic aquaorganoplatinum(lI) complexes, in agreement with their lability to the substitution reactions.  相似文献   

12.
The mononuclear σ-aryl complexes of the type trans-[Pt(σ-C6H4R)(4,7-phen)(PPh3)2]OTf (R=4-CO2SitBuPh2, 4-CONHMe, 3-CO2SitBuPh2, 3-CONHMe; OTf=trifluoromethanesulfonate) containing a monodentate 4,7-phenanthroline (4,7-phen) ligand were prepared by an oxidative addition reaction of an aryl iodide with Pt(PPh3)4 to yield the key iodoplatinum(II) precursors trans-[PtI(σ-C6H4R)(PPh3)2], followed by halogen metathesis with one equivalent of 4,7-phen. The reaction of trans-[Pt(σ-C6H4R)(4,7-phen)(PPh3)2]OTf with labile complexes of the type trans-[Pt(OTf)L2(σ-C6H4R′)] (L=PEt3, R′=H; L=PPh3, R′=4-CO2SitBuPh2, 3-CO2SitBuPh2, 3-CONHMe) afforded the asymmetric dinuclear complexes of the type trans-[Pt(σ-C6H4R)L2(μ-4,7-phen)Pt(σ-C6H4R′)L′2](OTf) 2 (L=PPh3, R=4-CO2SitBuPh2, L′=PEt3, R′=H; L=L′=PPh3, R=4-CONHMe, R′=4-CO2SitBuPh2; R=4-CO2SitBuPh2, R′=3-CONHMe; R=3-CONHMe, R′=3-CO2SitBuPh2) in which the 4,7-phen acts as a bridging bidentate ligand. The novel dinuclear species undergo an unusual redistribution reaction that is essentially thermoneutral at 298 K. The exchange process involves facile cleavage of a Pt-N bond and the rapid exchange of trans-[PtL2(σ-aryl)] units in the equilibrium mixture.  相似文献   

13.
The reactions of Pt(PPH3)4 and Pt(C2H4)(PPh3)2 with CH2ClI have been investigated. The product of the reaction of Pt(PPh3)4 with CH2ClI is the cationic ylide complex cis-[Pt(CH2PPh3)Cl(PPh3)2][I], whereas the reaction of Pt(C2H4)-(PPh3)2 gives the oxidative addition product Pt(CH2Cl)I(PPh3)2. Reaction of cis- or trans-Pt(CH2Cl)I(PPh3)2] with PPh3 gives the complex cis-[Pt(CH2PPh3)-Cl(PPh3)2][I]. The structures of the complexes cis-[Pt(CH2PPh3X(PPh3)2][I] (where X = Cl or I) have been determined by X-ray crystallography. Both complexes crystalize in the monoclinic space group P21/n. For X = Cl a 1388.6(7), b 2026.7(10), c 1823.9(9) pm, β 96.51(2)° and R converged to 0.075 for 3542 observed reflections; structural parameters Pt-Cl 240(1), Pt-C(3) 212(2), Pt-P(2) (trans to Cl) 235(1) and Pt-P(1) (trans to CH2PPh3) 233(1) pm; Cl-Pt-C(3) 86.9(5), C(3)-Pt-P(2) 91.8(5), P(2)-Pt-P(1) 97.0(2) and P(1)-Pt-Cl 85.1(2)°. For X = I, a 1379.4(7), b 2044.4(10), c 1840.0(9) pm, β 96.09(2)° and R converged to 0.071 for 4333 observed reflections; structural parameters Pt-I 266(1), Pt-C(3) 212(2), Pt-P(2) (trans to I) 226(1) and Pt-P(1) (trans to CH2PPh3 233(1) pm; I-Pt-C(3) 87.2(5), C(3)-Pt-P(2) 91.5(5), P(2)-Pt-P(1) 96.5(2) and P(1)-Pt-I 85.6(1)°. Some other complexes of the type cis-[Pt(CH2PPh3)X(PPh3)2]Y are also described.  相似文献   

14.
The complex [Pt(C2H4)(PPh3)2] reacts with Pb2Ph6 to give cis-[PtPh(Pb2Ph5)(PPh3)2]; this decomposes in solution to cis-[PtPh(PbPh3)(PPh3)2], which may also be obtained from the ethylene complex and PbPh4. Lead compounds PbPhMe3 and PbPh3Br also give products of insertion into PbPh bonds, but PbMe3Cl gives cis- and trans-[PtCl(PbMe3)(PPh3)2]. The complex trans-[Pt(PbPh3)2(PEt3)2] reacts with 1,2-bis(diphenylphosphino)ethane (DPPE) to give [Pt(PbPh3)2(DPPE)] which readily decomposes in dichloromethane in presence of PEt3 to give [Pt(PbPh3)(PEt3)(DPPE)]Cl and [PtPh(PEt3)(DPPE)]Cl. The complex trans-[PtCl(PbPh3)(PEt3)2] was detected in the products of reactions between trans-[PtCl2(PEt3)2] and trans-[Pt(PbPh3)2(PEt3)2] or less than 2 moles of LiPbPh3; it was not detected in the mixture after treatment of trans -[Pt(PbPh3)2(PEt3)2] with HCl. In contrast to an earlier report, we were unable to detect lead-containing complexes in the products of the reaction between trans-[PtHCl(PPh3)2] and Ph3PbNO3. The complexes and their decomposition products were identified by pre31P-{1H} NMR spectroscopy.  相似文献   

15.
Diphenylphosphorylazide N3P(O)(OPh)2 reacts with Pt(PPh3)3, Pt(PPh3)2(C2H4), trans-RhCl(CO)(PPh3)2, Ru(CO)3(PPh3)2, CoCl2(PPh3)2 and CuCl(PPh3)2 to give the azido complexes Pt(PPh3)2(N3)R, Pt(PPh3)2(N3)2R2, the urylene complex RhCl(PPh3)2(RNCONR) and the phosphine imine complexes Ru(CO)3(RPPh3)2, CoCl2(RNPPh3)2, CuCl(RNPPh3)2, respectively, (RP(O)(OPh)2). The oxidative addition of n-C6F13SO2N3 to Pt(PPh3)4 and Pt(PPh3)2(C2H4) affords the complexes Pt(PPh3)2(N3)R and Pt(PPh3)2(N3)2R2, respectively, (RSO2C6F13. The compounds are characterized by elemental analysis and by their IR spectra.  相似文献   

16.
The series of cis/trans-trifluoromethylselenato complexes [Pt(SeCF3)2 − xClx(PPh3)2] (x = 0, 1) was identified by NMR spectroscopic methods. While in acetonitrile solution spectra are dominated by the resonances of the cis derivatives, those of pure cis-[Pt(SeCF3)2(PPh3)2] indicate cis-trans-isomerisation in CH2Cl2 solution. In contrast, exchange reactions of cis-[PtCl2(PPh3)2] and [NMe4]TeCF3 only gave evidence for cis isomers. Molecular structures of cis- and trans-[Pt(SeCF3)2(PPh3)2] and cis-[Pt(TeCF3)2(PPh3)2] are discussed in comparison with related compounds.  相似文献   

17.
The hydrides [MH(O2CCF3)(CO)(PPh3)2] (M = Ru or Os) react with disubstituted acetylenes PhCCPh and PhCCMe to afford vinylic products [M{C(Ph)CHPh}(O2CCF3)(CO)(PPh3)2] and [M{C(Ph)CHMe}(O2CCF3)(CO) (PPh3)2]/[M{C(Me)CHPh}(O2CCF3)(CO)(PPh3)2] respectively. Acidolysis of these products with trifluoroacetic acid in cold ethanol liberates cis-stilbene and cis-PhHCCHMe respectively thus establishing the cis-stereochemistry of the vinylic ligands. The complexes [M(O2CCF3)2(CO)(PPh3)2] formed during the acidolysis step undergo facile alcoholysis followed by β-elimination of aldehyde to regenerate the parent hydrides [MH(O2CCF3)(CO)(PPh3)2] and thereby complete a catalytic cycle for the transfer hydrogenation of acetylenes. The molecular structure of the methanol-adduct intermediate, [Ru(O2CCF3)2(MeOH)(CO)(PPh3)2] has been determined by X-ray methods and shows that the coordinated methanol is involved in H-bonding with the monodentate trifluoroacetate ligand [MEO-H---OC(O)CF3; O...O = 2.54 Å]. The hydrides [MH(O2CCF3)(CO) (PPh3)2]react with 1,4-diphenylbutadiyne to afford the complexes [M{C(CCPh)CHPh} (O2CCF3)(CO)(PPh3)2]. The ruthenium product, which has also been obtained by treatment of [RuH(O2CCF3)(CO)(PPh3)2] with phenylacetylene, has been shown by X-ray diffraction methods to contain a 1,4-diphenylbut-1-en-3-yn-2-yl ligand. The osmium complexes [Os(O2CCF3)2(CO)(PPh3)2], [OsH(O2CCF3)(CO)(PPh3)2] and [Os{C(CCPh)CHPh}(O2CCF3)(CO)(PPh3)2] all serve as catalysts for the oligomerisation of phenylacetylene. Acetylene reacts with [Ru(O2CCF3)2(CO)(PPh3)2] in ethanol to afford the vinyl complex [Ru(CHCH2)(O2CCF3)(CO)(PPh3)2].  相似文献   

18.
2-Butyne reacts stereospecifically with (PPh3)2Ni(Ph)(Br) in CH3OH at room temperature, leading to the isolable vinyl complex trans-(PPh3)2-Ni(Br)[cis-C(CH3)C(CH3)(Ph)] in 70% yield. Carbonylation (CO/CH3OH) of this material gives a 98% yield of cis-α,β-dimethylcinnamate. Reaction of the phenylnickel complex with 3-hexyne is more complicated; insertion again occurs, but the ultimate products of the reaction are phenyl-substituted styrenes and butadienes. Evidence is presented that free vinyl radicals are involved as intermediates in the 3-hexyne reaction.  相似文献   

19.
Tetracloro-o-benzoquinone reacts with (diphenylacetylene)bis(tirphenylphosphine)platinum(0) to give the novel platinum(II) diphenylacetylene complex, Pt(C6Cl4O2)PhCCPh)(PPh3), (I), which reacts with hydrogen halides to give the compelexes cis-PtX2(PhCCPh((PPh3), (X = Cl or Br). Hydrogen chloride also readily removes the tetrachloro-o-benzoquinoneligand from the adducts Ni(C6Cl4O2)(Ph2PCH2CH2PPh2) and M(C6Cl4O2)(PPh3)2, (M = Pd or Pt) but it has no reaction upon Ir(Cl)(C6Cl4O2)(CO)(PPh3)2 at room temperature. The acetylene in (1) is susceptible to nucleophilic attact and reaction with diethylamine gives the vinyl adduct Pt(C6Cl4O2)(CPhCPh)NHEt2)(PPh3). Other reactions of (I) have also been studied. Attemps to prepare other olefin or acetylene complexes of platinum(II) by the action of tetrachlor-o-benzoquinone on the complexes Pt(L)(PPh3)2, (L = PhCCH,(Et)(Me)(HO)CCCC(OH)(Me)(Et), HOCH2OH, CF3CCCF3, CF2CF2, CF2CH2 or trans-PhCHCHPh) are also described.  相似文献   

20.
The mono-hydrido-bridged complexes (PEt3)2(Ar)Pt(μ2-H)Pt(Ar)(PEt3)2]-[BPh4] (Ar = Ph, 4-MeC6H4 and 2,4-Me2C6H3) have been obtained by treating trans-[Pt(Ar)(MeOH)(PEt3)2][BF4] with sodium formate and Na[BPH4]. The cations [PEt3)2(Ar)Pt(μ2-H)Pt(Arb')(PEt3)2]b+ (Ar = Ph and Arb' - 2,4-Me2C6H3 and 2,4,6-Me3C6H2 have bee identified in solution. Their b1H- and b31P-NMR data are reported. The X-ray crystal structure of [(PEt3)2(Ph)Pt(μ2-H)Pt(Ph)(PEt3)2][BPh4] is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号