首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative fluoride donor ability: C6F5BrF2 > C6F5IF2 > C6F5IF4 was outlined from reactions with Lewis acids of graduated strength in different solvents. Fluoride abstraction from C6F5HalF2 with BF3·NCCH3 in acetonitrile (donor solvent) led to [C6F5HalF·(NCCH3)n][BF4]. The attempted generation of [C6F5BrF]+ from C6F5BrF2 and anhydrous HF or BF3 in weakly coordinating SO2ClF gave C6F5Br besides bromoperfluorocycloalkenes C6BrF7 and 1-BrC6F9. In reactions of C6F5IF2 with SbF5 in SO2ClF the primary observed intermediate (19F NMR, below 0 °C) was the 4-iodo-1,1,2,3,5,6-hexafluorobenzenium cation, which converted into C6F5I and 1-IC6F9 at 20 °C. The reaction of C6F5IF4 with SbF5 in SO2ClF below −20 °C gave the cation [C6F5IF3]+ which decomposed at 20 °C to C6F5I, 1-iodoperfluorocyclohexene, and iodoperfluorocyclohexane. Principally, the related perfluoroalkyl compound C6F13IF4 showed a different type of products in the fast reaction with AsF5 in CCl3F (−60 °C) which resulted in C6F14. Intermediate and final products of C6F5HalFn−1 (n = 3, 5) with Lewis acids were characterized by NMR in solution. Stable solid products were isolated and analytically characterized.  相似文献   

2.
The perfluoro radicals n-C3F7 and iso-C3F7 have been prepared by pyrolyzing the corresponding iodides in a platinum effusion tube at temperatures between 450–550°C and isolated in argon matrices. By eliminating absorption bands attributed to known fluorine compounds and applying relative absorption band intensity correlations, several absorption bands have been assigned, some 30 to n-C3F7 and 29 to iso-C3Fe7, in the spectral range 2000–200 cm-1. A tentative vibrational assignment is presented for both species on the assumption of Cs symmetry. Some thermodynamic implications of the findings are also discussed.  相似文献   

3.
Absorption bands of Ho3+ in vitreous La2S3·3Ga2S3 in the range 500 to 2000 nm were assigned. Excitation spectra reveal additional levels 5G6 and 5F3 obscured by the intrinsic absorption of the glass. The Ho3+ emission in chalcogenide glasses is more intense than in oxide glasses due to smaller non radiative relaxation as predicted by the theory of multiphonon relaxation.  相似文献   

4.
(C6F5)2Te reacts with elemental fluorine step by step to form the tellurium fluorides (C6F5)2TeF2, (C6F5)2TeF4 and (C6F11)2TeF4, which can be isolated in pure states. The intermediates (C6F11?2n)2TeF4 (n = 1,2) are detected spectroscopically. (C6F5)2TeF2 is also formed from the reaction of (C6F5)2Te with XeF2. The preparations, properties and 19F n.m.r. spectra of these new compounds are discussed, the mass and vibrational spectra are described.  相似文献   

5.
The magnetic circular dichroism (MCD) for the three low-energy absorption bands of the Eu(C2H5SO4)3·9H2O crystal has been measured at room temperature. It may be well understood from the MCD as well as from other experimental results that two of these bands, 7F15D0 and 7F05D1, are of magnetic dipole origin. However, the MCD of another band at about 18650 cm?1, 7F15D1, cannot be interpreted as being only one electric dipole in origin, which has been pointed out by several investigations. The present MCD analysis indicates that although this broad band consists of one electric- and two magnetic-dipole transitions, each of which has a sizeable absorption strength, the MCD spectrum originates exclusively from the two magnetic dipole transitions  相似文献   

6.
The molecules ArFXeF (ArF=C6F5, 2,4,6-C6H2F3) with a more polar Xe-F bond than XeF2 are versatile starting materials for substitution reactions. Fluorine-aryl substitutions with Cd(ArF)2, C6F5SiMe3/[F], and C6F5SiF3 formed symmetric and/or asymmetric diarylxenon compounds. Applying C6F5BF2, with a higher F-affinity than the corresponding aryltrifluorosilane, in contrast gave the salt [RXe] [ArFBF3]. Using the alkenyl and alkyl compounds CF2=CFSiMe3/[F], CF3SiMe3/[F], and Cd(CF3)2 in reactions with C6F5XeF, the perfluoroalkenyl or -alkyl transfer reagents were consumed without observing C6F5XeCF=CF2 or C6F5XeCF3 but the formation of Xe(C6F5)2 (dismutation product) and in the latter case C6F5CF3 (coupling product), gave hints of the desired intermediates.  相似文献   

7.
A new method for the preparation of bis(perfluoroorgano) zinc compounds is described: CF3I and C6F5I react with dialkylzinc in the presence of a Lewis base quantitatively to give (CF3)2Zn and (C6F5)2Zn complexes, while the analogous reactions with C2F5I and iC3F7I do not yield the pure compounds. 1H, 19F n.m.r, i.r. and Raman spectra are presented.  相似文献   

8.
The electronic absorption spectrum of (η5-C5H5)Mn(CO)2[C(C6H5)2]shows an intense maximum which is assigned to a MLCT transition in which the empty pπ orbital on the carbene carbon is populated. Upon irradiation of this band, the complex undergoes a decomposition with a disappearance quantum yield Φ = 0.10 ± 0.01 independent of solvent. In the CT excited state, the complex can be roughly described as containing d5 MnII and a diphenylcarbene radical anion ligand C(C6H5)2?. Due to the kinetic lability, the complex decomposes producing a MnII species and the free carbene radical anion, which then undergoes secondary reactions. In addition, small amounts of substitution product are observed. It is proposed that prior to total decomposition of the excited state, a radical pair (η5-C5H5)Mn(CO)2S+/C(C6H5)2?forms (S = solvent). A back electron transfer from C(C6H5)2?to the labile cation competes with decomposition to produce the substituted complex and free carbene.  相似文献   

9.
Reactions of PdRR′(η1-dppm)2 (R = R′= C6F5 or C6Cl5; R = C6F5, R′= Cl; dppm = Ph2PCH2PPh2) with the gold derivatives ClAu(tht), C6F5Au(tht), (C6F5)3Au(tht) or O3ClOAuPPh3 (tht = tetrahydrothiophen) in appropriate ratios yield the bi- or tri-nuclear complexes PdRR′(dppm)2AuCl, PdRR′(dppm)2Au(C6F5); PdRR′(dppm)2Au(C6F5)3; PdRR′(dppmAuCl)2; PdRR′(dppmAuC6F5)2; PdRR′[dppmAu(C6F5)3]2, [PdRR′(dppm)2Au]X (X = ClO4 or BPh4); [PPh3Au(dppm)Pd(C6F5)2(dppm)AuCl]ClO4 or [PPh3 Au(dppm)Pd(C6F5)2(dppm)Au(C6F5)3]ClO4. The structure of trans-Pd(C6F5)2[dppmAu(C6F5)]2 has been determined by X-ray diffraction.  相似文献   

10.
The UV and IR spectra of CxF2x+1CHO (x = 1-4) were investigated using computational and experimental techniques. CxF2x+1CHO (x = 1-4) have broad UV absorption features centered at 300-310 nm. The maximum absorption cross-section increases significantly and shifts slightly to the red with increased length of the CxF2x+1 group: CF3CHO, 3.10 × 10−20 (300 nm); C2F5CHO, 6.25 × 10−20 (308 nm); C3F7CHO, 8.96 × 10−20 (309 nm); and C4F9CHO, 10.9 × 10−20 (309 nm). IR spectra for CxF2x+1CHO were recorded, calculated, and assigned. Results are discussed with respect to the literature data and to the atmospheric fate of CxF2x+1CHO.  相似文献   

11.
Enthalpies of formation of ground states of the gaseous particles CF, CF2, C2F5, CF4, CF3I, C2F4, and C2F6 were calculated by ab initio method in the CCSD(T) approximation with extrapolation to the full basis and regard to the correlation energy. Their equilibrium geometrics, frequencies of normal vibrations, and other values were found by the B3LYP/aug-cc-pvdz method, from which thermodynamic functions within the range of 0–6000 K were calculated. Equilibrium constants were calculated from these functions, and then the information on the rate constants in the limit of high pressures was obtained.  相似文献   

12.
In the reaction of C5H5Co(CO)(C3F7)I with isonitriles in the molár ratio 11 the brown complexes C5H5Co(CNR)(C3F7)I are formed. The fluorine atoms of the α-CF2 groups are diastereotopic because of the asymmetric center at the Co atom. With (—)-α-phenylethylisonitrile a pair of diastereoisomers is obtained which could not be separated.C5H5Co(CO)(C3F7)I and C5H5Co(CNR)(C3F7)I react with excess isonitrile with the formation of benzene soluble, yellow salts [C5H5Co(CNR)2(C3F7)]+I?, which can be transformed into the corresponding PF?6 salts. The new compounds were characterised by C, H, N, Co analyses, molecular weight determinations, IR, 1H NMR, 19F NMR, 13C NMR, ESCA and mass spectra.  相似文献   

13.
[Na{Ti2(C5Me5)2F7}] (1) was prepared from sodium fluoride and [{Ti(C5Me5)F3}2] [H.W. Roesky, et al., Angew. Chem. Int. Ed. Engl. 31 (1992) 864-866]. The solid-state 1 consists of a polymeric chain of two rows of dititanate anions [Ti2(C5Me5)2F7] connected by sodium ions in the middle of the chain. Each sodium ion is coordinated by five fluorine atoms from three [Ti2(C5Me5)2F7] anions. The variable-temperature 19F NMR of CD3CN solution of 1 revealed interconversions of monomeric species [Na(CD3CN)n{Ti2(C5Me5)2F7}] (1solv) with different number of CD3CN ligands on the sodium ion. The addition of HMPA to the CD3CN solution of 1 allows 19F NMR observation of 1·HMPA (1a) and 1·HMPA·CD3CN (1b) in the slow exchange. The solid-state structure of [NaTi6(C5Me5)5F20(H2O)]·(THF) (2·THF) reveals the sodium ion coordinated by four fluorine atoms from the anion [Ti2(C5Me5)2F7] and by three fluorine atoms from the cluster [Ti4(C5Me5)3F13(H2O)].  相似文献   

14.
[Pd(C6F5)2(CNR)2] (R = Cy, But, p-MeC6H4 (p-Tol)) react with [PdCl2(NCPh)2] to give [Pd2(μ-Cl)2(C6F5)2(CNR)2]. In refluxing benzene insertion of isocyanide into the C6F5Pd bonds occurs only for R = p-Tol, to give a imidoyl bridged polynuclear complex cis-[Pd2 (μ-Cl)2[μ-C(C6F5) = N(Tol-p)]2n]. This complex reacts with (a) Tl(acac) to give [Pd2{μ-C(C6F5) = N(Tol-p)}2(acac)2]; (b) neutral monodentate ligands to afford dimeric complexes [Pd2{μ-C(C6F5) = N(Tol-p)}2Cl2L2] (L = NMe3, py, 4-Me-py, SC4H8), and (c) isocyanides to give insoluble complexes of the same composition which are thought to be polymeric, [Pd(CNR)Cl{μ-C(C6F5) = N(p-Tol)}]n (R = p-Tol, Me, But). Thermal decomposition of cis-[Pd2 (μ-Cl)2 [μ-C(C6F5) = N( p-Tol)]2n] gives the diazabutadiene species (p-Tol)NC(C6F5)C(C6F5)N(p-Tol) in high yield.  相似文献   

15.
A spectroelectrochemical study of the two isostructural asymmetric perfluoroalkyl derivatives C1‐7,24‐C70(CF3)2 and C1‐7,24‐C70(C2F5)2 is presented. Reversible formation of their stable monoanion radicals is monitored by cyclic voltammetry and by in situ ESR‐Vis‐NIR spectroelectrochemistry. The ESR spectrum of the C70(CF3)2?. radical is a 1:3:3:1 quartet with a 19F hyperfine coupling constant (a(F)) of 0.323(4) G, demonstrating that the unpaired spin is coupled to only one of the two CF3 groups. The 13C satellites are assigned to specific carbon atoms. The ESR spectrum of the C70(C2F5)2?. radical is an apparent octet with an apparent a(F) value of 0.83(2) G. DFT calculations suggest that this pattern is due to the superposition of spectra for four nearly isoenergetic C70(C2F5)2?. conformers. Time‐dependent DFT calculations suggest that the NIR band at 1090 nm exhibited by both C70(Rf)2?. radical anions is assigned to the SOMO→LUMO+3 transition. The analogous NIR band exhibited by the closed‐shell C70(CF3)22? dianion was blue‐shifted to 1000 nm.  相似文献   

16.
The volatile fluorofullerene products of high-temperature reactions of C60 with the ternary manganese(III, IV) fluorides KMnF4, KMnF5, A2MnF6 (A+ = Li+, K+, Cs+), and K3MnF6 were monitored as a function of reaction temperature, reaction time, and stoichiometric ratio by in situ Knudsen-cell mass spectrometry. When combined with fluorofullerene product ratios from larger-scale (bulk) screening reactions with the same reagents, an optimized set of conditions was found that yielded the greatest amount of C60F8 (KMnF4/C60 mol ratio 28-30, 470 °C, 4-5 h). Two isomers of C60F8 were purified by HPLC, one of which has not been previously reported. Quantum chemical calculations at the DFT level combined with 1D and 2D 19F NMR, FTIR, and FT-Raman spectroscopy indicate that the C60F8 isomer previously reported to be 1,2,3,8,9,12,15,16-C60F8 is actually 1,2,3,6,9,12,15,18-C60F8, making it the first high-temperature fluorofullerene with non-contiguous fluorine atoms. The new isomer, which was found to be 1,2,7,8,9,12,13,14-C60F8, is predicted to be 5.5 kJ mol−1 more stable than 1,2,3,6,9,12,15,18-C60F8 at the DFT level. In addition, new DFT calculations and spectroscopic data indicate that the compound previously isolated from the high-temperature reaction of C60 and K2PtF6 and reported to be 16-CF3-1,2,3,8,9,12,15-C60F7 is actually 18-CF3-1,2,3,6,8,12,15-C60F7.  相似文献   

17.
Complexes of N-substituted 1,3,5-triazacyclohexanes with CrCl3 form 1:1 adducts with [PhNMe2H][B(C6F5)4] with increased solubility in toluene. Addition of AliBu3 leads to free PhNMe2 and a complex with [B(C6F5)4] weakly coordinated to chromium via a meta-fluorine atom. This complex can polymerise and/or trimerise olefins similar to methyl aluminoxane activated complexes. Decomposition of the active complex involves transfer of the triazacyclohexane to aluminium leading to [(triazacyclohexane)AliBu2][B(C6F5)4] and [(arene)2Cr][B(C6F5)4]. These chromium(I) complexes have been characterised by X-ray crystallography and prove that chromium is reduced to the oxidation state +I during the catalysis.  相似文献   

18.
The fulvenallenyl radical was produced in 6 K neon matrices after mass‐selective deposition of C7H5? and C7H5+ generated from organic precursors in a hot cathode ion source. Absorption bands commencing at λ=401.3 nm were detected as a result of photodetachment of electrons from the deposited C7H5? and also by neutralization of C7H5+ in the matrix. The absorption system is assigned to the 1 2B1←X 2B1 transition of the fulvenallenyl radical on the basis of electronic excitation energies calculated with the MS‐CASPT2 method. The vibrational excitation bands detected in the spectrum concur with the structure of the fulvenallenyl radical. Employing DFT calculations, it is found that the fulvenallenyl anion and its radical are the global minima on the potential energy surface among plausible structures of C7H5.  相似文献   

19.
The low temperature structure of C6F5PCl4 was confirmed by 35Cl NQR measurements as ψ-trigonal bipyramidal, with the C6F5 group axial. Discrepancies were found with previously reported data, possible causes of these are discussed.  相似文献   

20.
The Ni-methyl complex (η5-C5H5)Ni(CH3)(PPh3) (1) reacted with B(C6F5)3 to give an unstable contact ion-pair complex with a μ-methyl bridge between the Ni and B atoms. Formation of the B-CH3 bond was confirmed by the reaction of this complex with PPh3 to give [(η5-C5H5)Ni(PPh3)2][B(CH3)(C6F5)3] which was structurally characterized. Spontaneous decomposition of the contact ion-pair complex yielded (η5-C5H5)Ni(C6F5)(PPh3) which is very stable and does not show any reactions with norbornene with or without added B(C6F5)3. 19F NMR study showed that the polynorbornene obtained by the catalysis of 1/B(C6F5)3 system has the C6F5 end-group. A series of reactions, which includes CH3/C6F5 exchange between the Ni and B centers with concomitant dissociation of PPh3 to accept coordination of a norbornene monomer, is proposed as the route to active species that can initiate vinyl polymerization of norbornene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号