首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ammonium tetrametaphosphate-tellurate dihydrate, (NH4)4P4O12 · 2Te(OH)6 · 2H2O, is triclinic with the following unit cell dimensions: a = 11.845(6), b = 8.554(5), c = 7.433(5) Å, α = 66.28(5), β = 95.91(5), γ = 76.00(5)° space group: P1 and Z = 1. The crystal structure has been determined with a final R value of 0.021. As in the previously described phosphate-tellurates, monophosphate-tellurate and trimetaphosphate-tellurates, the phosphoric anion (here the P4O12 ring) is independent of the octahedral Te(OH)6 group. A complete pattern of the hydrogen bonds is given.  相似文献   

2.
Reaction of tellurium(IV) with excess phenylenethiourea(2-mercaptobenzimidazole) in aqueous methanolic hydrochloric acid leads to the formation of Te(II) complex, tetrakis(phenylenethiourea)tellurium(II) chloride dihydrochloride. The characterisation and crystal structure of the complex are reported. The crystals are monoclinic, space group P21/c, a = 13.939(5), b = 26.523(9), c = 4.873(2) Å, β = 100.29(4)°, V = 1772.6 Å3, M = 872.4, Dc = 1.651 g cm?3, Z = 2, F(000) = 868, μ(MoKα) = 1.298 mm?1. Final R = 0.055 and RW = 0.056 for 918 independent reflections. The tellurium atom in the molecule lies at the crystallographic centre of symmetry and is bonded to four phenylenethiourea sulphur atoms in a square planar arrangement with TeS(1) = 2.678(6), TeS(2) = 2.674(5) Å and S(1)TeS(2) is 90.5(3)°. The ligand behaves as a thione. Chlorine atoms remain outside the coordination sphere of the Te and stabilise the packing arrangement in the unit cell through hydrogen bondings to nitrogen atoms.  相似文献   

3.
Perfluorobutanesulfonyl fluoride C4F9SO2F, obtained by electrofluorination of sulfolene, may contain up to 10 % of perfluorotetramethylene sulfone. Upon hydrolysis with base, this sulfone yields octafluorobutanesulfonate ion H(CF2)4SOø3 (V). Perfluorobutanesulfonic acid and octafluorobutanesulfonic acid (VI) which are readily obtained from the salts and H2SO4 can be separated via fractional distillation. VI forms a crystalline monohydrate, M.P. 45°C. The trimethylsilyl ester was obtained from VI and (CH3)3 SiCl. Upon heating above 250° the K sulfonate (Vb) liberates HF.  相似文献   

4.
Synthesis, crystal structure, DSC characterization, dielectric and Raman measurements are given for a new mixed solution K0.84(NH4)1.16SO4Te(OH)6 (KNST). X-ray studies showed that the title compound crystallizes in the monoclinic system (P21/c) with the following parameters: , , , β=120.17(2)° and Z=4. The structure can be regarded as being built of isolated TeO6 octahedra, SO4 tetrahedra and cations. The main feature of this structure is the coexistence of two types of hydrogen bonds OHO and NHO ensuring the cohesion of the crystal. Crystals of K0.84(NH4)1.16SO4Te(OH)6 undergo two endothermic peaks at 425 and 480 K and a shoulder at 470 K. These transitions detected by DSC and analyzed by dielectric measurements using the impedance and modulus spectroscopy techniques. Raman scattering measurements on K0.84(NH4)1.16SO4Te(OH)6 material taken between 300 and 620 K are reported in this paper. The spectra indicate clearly two phase transitions.  相似文献   

5.
Syntheses and single-crystal X-ray diffraction studies have been completed on two cycloruthenapentadienyl (CO)6Ru2L2 derivatives, with L = CH2OHC = CCH2OH and C2H5C=CCH2CH2OH respectively. Crystal data are as follows: for [(CO)3RuC4(CH2OH)4]Ru(CO)3·H2O, P21/c, a 13.72(1), b 9.501(4), c 14.86(1) Å, β 101.10(6)°, Rw = 0.052 for 1911 reflections; for [(CO)3RuC4(CH2CH2OH)2(C2H5)2]Ru(CO)3, P21/c, a 9.191(3), b 16.732(4), c 14.903(3) Å, β 113.61(4)°, Rw = 0.042 for 2865 reflections. Both compounds are built up from binuclear units, each unit being regarded as a Ru(CO)3 fragment π-bonded to a cycloruthenapentadienyl ring. The molecular parameters are compared with those of known cyclometallapentadienyl complexes of transition metals. The presence of a semi-bridging CO group is discussed.  相似文献   

6.
The Tl2TlOH(SO4)2 compound is monoclinic, a = 7.758 (3), b = 17.587 (9), c = 7.356 (3) Å, β = 119.91 (3)°, S. G. Cc, Z = 4. The structure was solved by full-matrix least square refinement to R = 0.033 from 1242 single-crystal reflections collected on an automated diffractometer. Tl+ ions ensure bonding between [TlIIIOH(SO4)2] sheets. These sheets may be viewed as criss-crossing TlSO4 chains. In the [101] direction, the linking of TlIII is reinforced by bidentate OH groups, so the usual hexacoordination of trivalent thallium is preserved. A transition occurring at 104°C is under investigation.  相似文献   

7.
Two new salts of malonic acid have been prepared: the copper(II) malonate tetrahydrate and the copper(II)-ammonium double malonate. Their study by thermal analysis (TG and DTA) leads to the following results:Cu(C3H2O4)·4H2O: the dehydration is rather complex and it is only under careful conditions that an intermediate hydrate Cu(C3H2O4)·3H2O could be traced. At about 170°C the dehydration is not ended (the salt holds yet about 0.15H2O) and the anhydrous salt occurs only at about 240°C. It decomposes immediately leading to residues the composition of which depends upon the surrounding atmosphere; the part played by the gas given off is discussed.Cu(NH4)2(C3H2O4)2: this salt melts and decomposes simultaneously at about 190°C. During the decomposition the copper nitride Cu3N forms as intermediate compound (as well as copper metal). Concerning the final residues of the decomposition the results and the conclusions are the same as the ones of the previous case.  相似文献   

8.
Samples of β-Co2(OH)3Cl and Zn5(OH)8Cl2 · H2O have been prepared and their thermal decomposition studied in air and N2 by DTA and TG up to 1000°C. X-Ray diffraction analysis of the thermal treatment products in air at various temperatures from 100 to 100°C was also carried out. The results obtained made it possible to establish the steps through which the pyrolysis of both compounds proceeds.  相似文献   

9.
武望婷  胡怀明  王尧宇  史启祯 《化学学报》2005,63(22):2032-2036
在水-乙醇混合体系中, 以2-羰基丙酸水杨酰腙(C10H10N2O4)、2,2-联吡啶(C10H8N2, 简写bipy)与Eu(NO3)3•4H2O反应, 首次培养出黄色单晶[Eu(C10H9N2O4)(C10H8N2O4)(H2O)3]•0.5bipy•3H2O. 该晶体属三斜晶系, 空间群为P-1, 晶胞参数a=0.93392(16) nm, b=1.3100(2) nm, c=1.3895(2) nm, α=97.205(3)°, β=105.411(2)°, γ=106.364(2)°, V=15.35(2) nm3, Z=2, μ=2.118 mm-1, Dc=1.686 Mg/m3, F(000)=786, R=0.0116, wR=0.0507, GOF=0.995. 晶体测试结果表明, 该单晶结构为铕的9配位配合物, 两个2-羰基丙酸水杨酰腙分别以负一价和负二价酮式和三个水分子同时参与配位; 每个2-羰基丙酸水杨酰腙中的羧基氧、酰胺基中的羰基氧和C=N中的氮与Eu3+配位, 形成两个共边的稳定五元环, 另三个配位原子则分别来自三个水分子中的氧原子, 该配合物在空间呈扭曲的单帽四方反棱柱, 而在不对称单位中还有游离的一个2,2-联吡啶分子和三个水分子, 这些游离分子与配位分子之间存在大量分子内和分子间氢键, 整个分子在空间呈三维网状结构. 发光性能测试表明该配合物具有很好的荧光性质.  相似文献   

10.
The LiPO3CeP3O9 and NaPO3CeP3O9 systems have been investigated for the first time by DTA, X-ray diffraction, and infrared spectroscopy. Each system forms a single 1:1 compound. LiCe(PO3)4 melts in a peritectic reaction at 980°C. NaCe(PO3)4 melts incongruently, too, at 865°C. These compounds have a monoclinic unit cell with the parameters: a = 16.415(6), b = 7,042(6), c = 9.772(7)Å; β = 126.03(5)°; Z = 4; space group C2c for LiCe (PO3)4; and a = 9.981(4), b = 13.129(6), c = 7.226(5) Å, β = 89.93(4)°, Z = 4, space group P21n for NaCe(PO3)4. It is established that both compounds are mixed polyphosphates with chain structure of the type |MIIMIIIII (PO3)4|MII: alkali metal, MIIIII: rare earth.  相似文献   

11.
We have found for the first time a ferroelastic transition in many molybdates and tungstates with the Sc2(MoO4)3-type structure. Below the transition these phases are monoclinic (P21a), and above the transition they are orthorhombic (Pnca). Observed transition temperatures are: Al2(MoO4)3, 200°C; Al2(WO4)3, ?6°C; Cr2(MoO4)3, 385°C; Fe2(MoO4)3, 499°C; In2(MoO4)3, 335°C; In2(WO4)3, 252°C; and Sc2(MoO4)3, 9°C.  相似文献   

12.
TeX4 (X = Cl, Br) react in HCl/HBr with [Ph(CH3)2Te]X (X = Cl, Br) to give [PhTe(CH3)2]2[TeCl6] (1) and [PhTe(CH3)2]2[TeBr6] (2). The reaction of PhTeX3 (X = Cl, Br, I) in cooled methanol with [(Ph)3Te]X (X = Cl, Br, I) leads to [Ph3Te][PhTeCl4] (3), [Ph3Te][PhTeBr4] (4) and [Ph3Te][PhTeI4] (5). In the lattices of the telluronium tellurolate salts 1 and 2, octahedral TeCl6 and TeBr6 dianions are linked by telluronium cations through Te?Cl and Te?Br secondary bonds, attaining bidimensional (1) and three-dimensional (2) assemblies. The complexes 3, 4 and 5 show two kinds of Te?halogen secondary interactions: the anion-anion interactions, which form centrosymmetric dimers, and two identical sets of three telluronium-tellurolate interactions, which accomplish the centrosymmetric fundamental moiety of the supramolecular arrays of the three compounds, with the tellurium atoms attaining distorted octahedral geometries. Also phenyl C-H?halogen secondary interactions are structure forming forces in the crystalline structures of compounds 3, 4 and 5.  相似文献   

13.
The electric dipole moments of the diaryl diselenides (RC6H4)2Se2 (R  H, 4-F, 4-Br, 4-CH3, 3-F) were measured in benzene solution at 25 and 45°C. The conformations of these compounds were deduced by matching experimental moments with values calculated for a variety of possible conformations. In the dissolved state the diselenides exist at 25°C in fixed “skew” conformations characterized by dihedral angles of 75–106° between the CSeSe planes, corresponding to the conformational energy minima. At 45°C oscillations about the SeSe bonds are excited in the diphenyl and bis(4-methylphenyl) diselenides, whereas the 4-bromophenyl derivative exhibits free rotation. The fluoro compounds have temperature-independent dipole moments, suggesting “rigid conformations” with dihedral angles of 106° (4-F) and 74.4° (3-F). An analysis of the dipole moments at 25 and 45°C obtained for the compounds (RC6H4)2X2 (R  H, 3-F, 4-F, 4-Br, 4-CH3; X  S, Se, Te) showed that the conformational properties of these derivatives change on passing from X  S to X  Te. The observed variations are explicable in terms of a decreasing repulsion between the lone electron pairs of the chalcogen atoms on going from the disulfides to the ditellurides and a concomitant reduction of the energy barrier to rotations about the XX bonds.  相似文献   

14.
The syntheses and spectroscopic characterisation of the new facultative tridentate tellurium containing ligands MeS(CH2)3Te(CH2)3SMe (S2Te) and H2N(CH2)3Te(CH2)3NH2 are described. The complexes of the former, fac-[Mn(CO)3(S2Te)]CF3SO3, [Rh(Cp*)(S2Te)][PF6]2, [MCl(S2Te)]PF6 (M=Pd or Pt), [Cu(S2Te)]BF4 and [Ag(S2Te)]CF3SO3 have been prepared and characterised by analysis, IR, 1H-, 13C{1H}-, 125Te- and 195Pt-NMR spectroscopy and mass spectrometry. The X-ray crystal structures of [Rh(Cp*)(S2Te)][PF6]2 and [PtCl(S2Te)]PF6 are described. The results are compared with those obtained from complexes of the related tridentates Te{(CH2)3TeR}2, Se{(CH2)3SeMe}2 and S{(CH2)3SR}2.  相似文献   

15.
Chromium(III)-carbonate reactions are expected to be important in managing high-level radioactive wastes. Extensive studies on the solubility of amorphous Cr(III) hydroxide solid in a wide range of pH (3–13) at two different fixed partial pressures of CO2(g) (0.003 or 0.03 atm.), and as functions of K2CO3 concentrations (0.01 to 5.8 mol⋅kg−1) in the presence of 0.01 mol⋅dm−3 KOH and KHCO3 concentrations (0.001 to 0.826 mol⋅kg−1) at room temperature (22±2 °C) were carried out to obtain reliable thermodynamic data for important Cr(III)-carbonate reactions. A combination of techniques (XRD, XANES, EXAFS, UV-Vis-NIR spectroscopy, thermodynamic analyses of solubility data, and quantum mechanical calculations) was used to characterize the solid and aqueous species. The Pitzer ion-interaction approach was used to interpret the solubility data. Only two aqueous species [Cr(OH)(CO3)22− and Cr(OH)4CO33−] are required to explain Cr(III)-carbonate reactions in a wide range of pH, CO2(g) partial pressures, and bicarbonate and carbonate concentrations. Calculations based on density functional theory support the existence of these species. The log 10 K° values of reactions involving these species [{Cr(OH)3(am) + 2CO2(g)Cr(OH)(CO3)22−+2H+} and {Cr(OH)3(am) + OH+CO32− Cr(OH)4CO33−}] were found to be −(19.07±0.41) and −(4.19±0.19), respectively. No other data on any Cr(III)-carbonato complexes are available for comparisons.  相似文献   

16.
The heat capacities of MnBr2 · 4D2O and MnCl2 · 4D2O have been experimentally determined from 1.4 to 300 K. The smoothed heat capacity and thermodynamic functions (H°TH°0) and S°T are reported for the two compounds over the temperature range 10 to 300 K. The error in the thermodynamic functions at 10 K is estimated to be 3%. Additional error in the tabulated values arising from the heat capacity data above 10 K is thought to be less than 1%. A λ-shaped heat capacity anomaly was observed for MnCl2 · 4D2O at 48 K. The entropy associated with the anomaly is 1.2 ± 0.2 J/mole K.  相似文献   

17.
Influence of NH4F concentration on the conditions of separation of Ti(IV) and Fe(III) salts by fractional hydrolysis under the action of ammonia in the system (NH4)2TiF6-(NH4)3FeF6-NH4F-H2O was studied. The coprecipitation of (NH4)3TiO2F5 and (NH4)3FeF6 as a result of crystallochemical substitution of Fe+3 for Ti+4 makes it possible to reduce the content of Fe(III) salts in the system. After separation of a precipitate containing up to 25% of Ti from solutions with NH4F concentrations from 10.6 to 22.3% and subsequent hydrolysis, the remaining titanium precipitates. The precipitate is annealed up to 800°C in the presence of water vapor to form TiO2 with a whiteness above 92%. Original Russian Text ? N.G. Bakeeva, P.S. Gordienko, E.V. Pashnina, 2009, published in Zhurnal Obshchei Khimii, 2009, Vol. 79, No. 1, pp. 3–8.  相似文献   

18.
Tricyclopentadienyltetrahydrofuranuranium(III), (η5-C5H5)3U·OC4H8, crystallizes in the centrosymmetric monoclinic space group P21/n with a 8.248(3), b 24.322(17), c 8.357(4) Å, β 101.29(5)°, V 1644.0 Å3 and ρ(calc) 2.04 g cm?1 for Z = 4 and mol.wt. 595.0. Diffraction data (Mo-Kα, 2θ(max) 45°) were collected on an Enraf-Nonius CAD4 diffractometer and the structure was refined to Rw(F) 4.7% for those 1530 reflections having I > 2σ(I). The molecule consists of a distorted tetrahedral arrangement of THF and (η5-C5H5) ligands with CpUCp angles in the range 110.4–122.4° and CpUO angles between 90.2 and 106.0°. Individual uranium-carbon distances range from 2.76(2) to 2.82(2) Å and average 2.79[1] Å. The uranium-oxygen distance of 2.551(10) Å suggests a 10-coordinate U3+ radius of 1.20 Å in this class of compounds.  相似文献   

19.
Single crystals of diammonium tetranitratouranylate (NH4)2[UO2(NO3)4] (I) and a new diammonium tetranitratouranylate complex with 18-crown-6 [(NH4)(18C6)]2[UO2(NO3)4] (II) have been synthesized by the reaction of diaquadinitratouranyl tetrahydrate with ammonium nitrate in a nitric acid solution and the reaction of the same reagents with 18C6 in an ethanol solution, respectively. The X-ray diffraction analysis of compounds I and II has been performed. Crystals of compounds I and II are monoclinic, Z = 2, space group P21/n, a = 6.4075(5) ?, b = 7.7851(7) ?, c = 12.4461(12) ?, β = 101.239(1)°, V = 608. 94(9) ?3 for compound I and a = 10.542(9) ?, b = 8.590(8) ?, c = 22.5019(19) ?, β = 101.632(1)°, V = 2058.3(3) ?3 for compound II. The [UO2(NO3)4]2− complex anion in compounds I and II contains two monodentate and two bidentate cyclic nitrato groups, and the coordination number of uranyl is 6. The 18C6 molecule in the structure of compound II has the classic crown conformation and combined with the ammonium ion by three hydrogen bonds. Compounds I and II formed by electrostatic attraction forces between counterions are stabilized by (NH4+)NH...O(NO3) interionic hydrogen bonds.  相似文献   

20.
The crystal and molecular structure of 3,4-quinoxalino-1-tellura(II)cyclopentane has been determined by X-ray diffraction at room temperature. The crystals are tetragonal, space group I41/a with a = b = 25.315(8), c = 6.010(1) Å and V = 3851.38 Å3. The density of 1.96 g cm?3 calculated on the basis of 16 molecules per unit cell is in agreement with the flotation value of 1.91 g cm?3. The structure has been refined to a conventional R value of 0.0408 using 744 independent observed reflections obtained from four-circle diffractometer measurements. The structure consists of discrete molecules TeC = 2.134 Å (av.), CN = 1.343 Å (av.) and angle CTeC = 80.7° (e.s.d. 0.5) but the intermolecular TeTe bonds (3.791 and 3.998 Å) are less than the sum of the Van der Waals' radii thus indicating the presence of secondary bonding. These short intermolecular contacts in the crystal structure are consistent with the anomalous physical properties observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号