首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The photolysis of [I2PtCH2 CH2 CH2 CH2 (PMe2 Ph)2] gives ethylene and but-1-ene as volatile products, the latter probably being formed via a five-coordinate platinum intermediate. However, the formation of propene from the photolysis of [Cl2PtCH2 CH2 CH2 (1,10-phenanthroline) appears to involve a direct transfer of a hydrogen atom between neighbouring CH2 groups in the ring. Other gaseous products, e.g. cyclopropane, ethylene, may be formed via a platinum ion radical.  相似文献   

2.
The amine substituted phosphines (C6H5)2PN(H)CH2CH3 and (C6H5)2PN(H)CH2C6H5 react with C5H5Fe(CO)2CH(C6H5) (OCH3) photolytically to give moderate yields of the four-membered chelate ring complexes C5H5Fe (CO) [(C6H5)2PN (CH2CH3) CH (C6H5)] and C5H5Fe (CO) [(C6H5)2 PN (CH2C6H5)CH(C6H5)], respectively. Photolysis of C5H5Fe(CO)2CH(C6H5) (OCH3) in the presence of (S)-(?)-diphenyl(1-phenylethylamino)phosphine leads to the isolation of C5H5Fe(CO)[(C6H5)2PNC(CH3) (C6H5)]CH2C6H5 which is proposed to arise from a formally 1,3-hydrogen shift rearrangement of an intermediate four-membered chelate ring complex.  相似文献   

3.
C5H5FeC5H4CH2NMe2 reacts with sodium chloropalladate(II) in the presence of sodium acetate to give the internally metallated binuclear species [Pd2X2 {C5H5FeC5H3CH2NMe2}2] (X = Cl). The corresponding iodide was prepared as were mononuclear species [Pd(acac) {C5H5FeC5H3CH2NMe2}] and [Pd-{C5H5FeC5H3CH2NMe2}L] L = PMe2Ph, AsMe2Ph, P(OMe)3 or PPh3. 1H NMR data are given.  相似文献   

4.
The cyclometallation of p-RC6H4CHNCH2C6H2, (R = H, Cl, NO2) by PdX2 (X = Cl, AcO) has been studied.In every case the cyclometallation occurs with formation of a five-membered ring containing the methine group. The structure of these compounds [PdX(p-RC6H3CHNCH2C6H5)]2, derived from 1H NMR spectra, are different from those reported previously. Reaction of these compounds with PEt3 gives the compounds [PdX(p-RC6H3CHNCH2C6H5)(PEt3)2] but with an excess of PPh3 only the complexes [PdX(p-RC6H3CHNCH2C6H5)(PPh3)] are formed.  相似文献   

5.
The synthesis and properties of a series of trans-halocarbonylrhodium(I) complexes containing the phosphinoalkylorganosilicon ligands Me3SiCH2PPh2, Me3Si(CH2)3PPh2, and PPh2CH2(Me)Si(OSiMe2)3O have been investigated. The complexes could be prepared by an exchange reaction involving RhCl(CO)(PPh3)2 and the organosilicon ligands or in better yields by the reaction of Rh2Cl2(CO)4 with the ligands. Iodorhodium derivatives were obtained as the exclusive products in the latter reaction if a small amount of LiI was present. The catalytic activity of RhCl(CO)(PPh2CH2SiMe3)2 was similar to that of RhCl(CO)(PPh3)2 in the hydroformylation of hex-1-ene at 100°C and 1000 psi pressure of H2/CO. The catalytic properties of the iodo derivatives RhI(CO)L2 [L = Me3SiCH2PPh2, Me3Si(CH2)3PPh2, and PPh2CH2(Me)Si(OSiMe2)3O] varied considerably, with RhI(CO)(PPh2CH2SiMe3)2 producing an unexpectedly low linear/branched aldehyde product ratio.  相似文献   

6.
The platinacyclobutane complexes PtCl2L2(C3H5Me)], L  pyridine, CD3CN, or tetrahydrofuran, exist as mixtures of isomers containing PtCH2CHMeCH2 or PtCHMeCH2CH2 groups in rapid equilibrium. Decomposition occurs in some cases to give [PtCl2L(CH3CH2CHCH2)]. Stereospecific skeletal isomerisation also occurs in metallocyclobutanes containing the groups PtCHRCHRCH2  PtCHRCH2CHR, when R  aryl further decomposition gives ν-allylplatinum complexes.  相似文献   

7.
Unstable transition metal compounds formed from hydridosilacyclobutanes are described: 1-methyl-1-silacyclobutane reacts with nonacarbonyldiiron to give the complexes [Fe(CO)4(H){Si(Me)CH2CH2CH2}] and [Fe{CH2CH2CH2Si(H)Me}(CO)4], and with bis(triphenylphosphine)(ethylene)platinum(0) to give [Pt(H)(PPh3)2{Si(Me)CH2CH2CH2}].  相似文献   

8.
Treatment of [{Ir(COD)(μ-Cl)}2] with excess of the electron-rich olefin [CN(Ar)(CH2)2NAr]2 (abbreviated as (LAr)2, Ar = C6H4Me-p or C6H4OMe-p) affords the ortho-metallated tricycle [Ir(LAr)3], which for Ar = C6H4Me-p (Ia) with HCL yields [Ir(LAr)2(LAr)]Cl (IV); X-ray data show that in IV there is an unexpectedly close Ir?C(o-aryl) contact (2;52(1) Å) involving the “free” LAr which compares with an IrC(o-aryl) distance of 2.09(3) Å in Ia or 2.07(3) Å in the ortho-metallated LAr ligand of complex IV.  相似文献   

9.
The addition of trimethylphosphane to five-membered metallacyclic vinylketone complexes of the type ArM(CO)2(HCCHCOR) (I) (Ar = η5-aromatic ring system: C5H5, C5H4Me, C5Me5; R = Me, Et, n-Bu; M = Mo, W) in pentane solution results in the formation of the ylidic metallacyclopropane complexes ArM(CO)2[(PMe3)-HCCH(COR)] (II). In these 1:1 adducts the three-membered ring is stabilized by an electron-donating phosphonium and an electron-attracting acyl substituent. The negative charge in the ylidic complexes II is localized on the central metal providing it with Lewis base properties. An extraordinary high electron density can be observed on the metal of the derivative C5H5W(CO)(PMe3)[(PMe3)HCCH-(COMe)] (III) which is formed by a 1:2 addition of C5H5W(CO)(C2H2)-(COMe) and PMe3. The metallacyclopropane complexes II and III are characterized by IR, 1H NMR, 13C NMR, 31P NMR and mass spectroscopy. For C5H5W(CO)2[(PMe3)HCCH(COMe)], the results of an X-ray structure determination are presented.  相似文献   

10.
The kinetics of the reaction of alkenes (e.g. cis-pent-2-ene, hex-1-ene, cyclopentene) with [PtX2(CH2CH2CH2)(THF)2] (X = Cl or Br, THF = tetrahydrofuran) or with [PtCl2(CHPhCH2CH2)(THF)2] in THF solution have been studied. The reactions occur with displacement of cyclopropane or phenylcyclopropane to give [PtCl2(olefin)(THF)], and follow essentially second order kinetics, first order in both platinum complex and olefin. The mechanism of reaction is discussed.  相似文献   

11.
The new phosphine, PBut2Bui (L), was prepared from But2PCl and LiBui. PPh2Bui (L′) was prepared from Ph2PCl and LiBui. Treatment of [PtCl2(NCBut)2] with L′ gives [PtCl2L′2] which does not cyclometallate even on prolonged boiling in 2-methoxyethanol. In contrast, [PtCl2(NCBut)2] reacts with PBut2Bui in boiling 2-methoxyethanol to give the cyclometallated complex [Pt2Cl2(PBut2CH2-CHMeCH2)2] (II, X = Cl). The corresponding bromide, iodide and acetylacetonate were prepared. With PPh3 II (X = Cl) gives [PtCl(PBut2CH2CHMeCH2)(PPh3)] which with NaBH4 gives [PtH(PBut2CH2CHMeCH2)(PPh3)]. Na2PdCl4 with L (2 mol equivalents) gave trans-[PdCl2L2], which was converted into trans-[Pd(NCS)2-L2] by metathesis with KSCN. Treatment of Na2PdCl4 with L (1 mol equivalent) gave [Pd2Cl4L2], which on heating in 2-methoxyethanol gave [Pd2Cl2(PBut2CH2-CHMeCH2)2], as a mixture of syn- and anti-isomers. The complexes trans-[PdCl2-L′2] and [Pd2Cl4L′2] were also prepared. 1H- and 31P NMR data are given.  相似文献   

12.
The kinetics of the reaction of arylcyclopropanes (4-XC6H4C3H5, X = H, Me, EtO) with either [Pt2Cl2(μ-Cl)2(C2H4)2] or [{PtCl2(CH2CH2CH2)} in tetrahydrofuran to give in each case [{PtCl2(CHArCH2CH2)}4] and ethylene or cyclopropane, respectively, have been studied. The reactions are essentially first order in both arylcyclopropane and platinum complexes. The order of reactivity follows the series X = EtO > > Me > H, and [Pt2Cl2(μ-Cl)2(C2H4)2]> [{PtCl2(CH2CH2CH2)}4] and the rate is accelerated in polar solvents. Mechanisms in which the arylcyclopropane first coordinates to platinum and then undergoes ring opening reactions are proposed.  相似文献   

13.
Silicon-transition metallic silacyclobutanes CpFe(L2)Si(Me)CH2CH2CH2 [L = CO or Ph2MeP; or L2 = (CO)(Ph2MeP)] have been prepared and their reactions (substitution at Si or Fe, Si—Fe cleavage, or ring-opening) studied.  相似文献   

14.
Sulfinyl fluoride and N-(F-isoprophyl)iminosulfur difluoride form the compounds, OSN(CH3)CH2CH2N(CH3) and i-C3F7NSN(CH3CH2CH2N(CH3 with symdimethylethylenediamine (1). In contrast, CF3C(O)NSF2 and (Rf)2SF2 (Rf = CF3, i-C3F7 form only acyclic compounds, CF3C(O)N(CH3)CH2CH2N(CH3)C(O)CF3 and RfSN(CH3)CH2CH2N(CH3)SRf with (1). With PF3, PF5 and OPF3, cyclic compounds N(CH3)CH2CH2N(CH3)PF, N(CH3)CH2CH2N(CH3)PF3, and N(CH3)CH2CH2N(CH3)P-(O)F result. When the latter two compounds are reacted further with LiNC(CF3)2, N(CH3)CH2CH2N(CH3)PF2NC(CF3)2 and N(CH3CH2CH2N(CH3)P(O)NC(CF3)2) form.  相似文献   

15.
The interaction of azobenzene and MnR(CO)5 (R  Me, Et, CH2Ph, CH2-C6Me5, COCF3, COCH2C6F5, COCH2OPh, Ph or C6F5) affords Mn(C6H4NNPh)-(CO)4, together with a binuclear complex Mn2(CO)6(C12H10N2) in some cases. The metallation reaction is shown to proceed most readily with Mn-(CH2Ph)(CO)5; with this reagent, the metallated complexes Mn(C6H4CH2PMe2)-(CO)3[PMe2(CH2Ph)] (two isomers) and Mn(C6H4CH2AsMe2(CO)4 have been obtained on treatment with EMe2(CH2Ph) (E  P and As, respectively).  相似文献   

16.
The η-hexamethylbenzenehydridoruthenium(II) complexes RuHCl(η-C6Me6)L (L = PPh3 (11), AsPh3 (12), P(C6H4-p-F)3 (14), P(C6H4-p-Me)3 (15), P(C6H4-p-OMe)3 (16), P-t-BuPh2 (17), P-i-PrPh2 (18), P-i-Pr3 (19), PCy3 (20) and P-t-BuMe2 (21)) have been made by heating [RuCl2(η-C6Me6)]2, the ligand and sodium carbonate in propan-2-ol. The triarylphosphine complexes 11, 14 and 15 react with methyllithium to give aryl ortho-metallated hydridoruthenium(II) complexes such as RuH(o-C6H4PPh2)(η-C6Me6) (22) and 19 similarly gives the isopropyl cyclometallated complex RuH(CH2CHMeP-i-Pr2(η-C6Me6) (29) as a mixture of diastereomers. Reaction of 17 with methyllithium gives initially the t-butyl cyclometallated complex RuH(CH2CMe2PPh2)(η-C6Me6) (25) which isomerizes by a first order process (k0?.2 h?1 in C6D6 or THF-d8 at 50°C) to the aryl ortho-metallated complex RuH(o-C6H4P-t-BuPh)(η-C6Me6) (26). The similarly generated isopropyl cyclometallated complex RuH(CH2CHMePPh2)(η-C6Me6) (27) has not been isolated in a pure state owing to rapid isomerization to RuH(o-C6H4P-i-PrPh)(η-C6Me6) (28); both 27 and 28 exist as a pair of diastereomers. The formation of the cyclometallated complexes and the isomerizations are thought to involve intermediate 16-electron ruthenium(O) complexes Ru(η-C6Me6)L.  相似文献   

17.
The oxidation of [PtCl3(C2H4)]- by Cl2 in aqueous solution, to yield CH2ClCH2OH and [PtCl4]2-, has been shown to proceed through the following sequence of steps: [PtCl3(C2H4)] Cl2Cl [PtCl5(CH2CH2Cl)]2-H2O(HCl) [PtCl5(CH2CH2OH)]2- → [PtCl42- + CH2ClCH2OHEach of the steps and intermediates in this mechanistic sequence has been identified and characterized.  相似文献   

18.
Treatment of Ir2Cl2(C8H14)4 with the phosphines t-Bu3?nP(CH2CMe3)n (n = 3,2,1) in hot toluene followed by crystallization of the products from C7H8/ EtOH mixtures gave the cyclometallated hydrides (C8H14)2Ir-μ-Cl2IrH[CH2CMe2CH2P(CH2CMe3)2][P(CH2 (I) [t-BuP(CH2CMe3)2]2H2Ir-μ-Cl2IrH[CH2CMe2CH2PBut(CH2CMe3)][t-BuP(CH2CMe3)2] (II), and [(t-Bu2PCH2CMe2CH2)HIrCl]2 (III). The dihydrides IrH2Cl[t-BuP(CH2CMe3)2]2 (IIa) and IrH2Cl(t-Bu2PCH2CMe3)2 (IIIa) were also isolated; these species were, however, more conveniently obtained by bubbling hydrogen through the solution of Ir2Cl2 (C8H14)4 and the respective phosphine in toluene. i-Pr3 reacted with the olefiniridium(I) precursor in C7H8/EtOH to yield the carbonyl complexes (i-Pr3P)2H2Ir-μ-Cl2Ir(CO)(PPri3)2 (IV) and IrCl(CO)(PPi3)2 (IVa), no cyclometallated product being detected. The stereochemistries of the complexes were deduced from IR, 1H, 31P, and 13C NMR data. The crystal structures of IIIa and IVa were also determined.  相似文献   

19.
Reaction of R—N=CH—CH=N—R with [(CH3)3Al]2 affords the coordination product (CH3)3AlRN=CH—CH=NR (A) for R = 2,6-(CH3)2C6H3 and 2,4,6(CH3)3C6H2. For R = 4 ClC6H4, 4-CH3C6H4 and 4-CH3OC6H4, insertion takes place, giving the complexes (CH3)2AlRN—CH(CH3)—CH=N—R (B), in which Al is part of a five-membered chelate ring. Depending on the temperature both the addition and insertion products rearrange intramolecularly to the complexes (CH3)2-AlR—N—CH2—C(CH3)=N—R (C), in which Al is also part of a five-membered chelate ring. Reactions of the asymmetric (CH3)2HC—N=CH—C(CH3)=N—CH-(CH3)2 with [Al(CH3)3]2 also leads to an insertion product, (CH3)2AlRN-—CH(CH3)—C(CH3)=N—R (B') (R = (CH3)2CH), but there is no subsequent rearrangement in this case.A mechanism involving hydrogen migration is tentatively proposed to account for the observed isomerization, which increases in rate in the order:R = (CH3)3C>2,4,6-(CH3)3C6H2> 2,6-(CH3)2C6H3 (A → C)andR = 4-CH3OC6H4>4-CH3C6H4>4-ClC6H4 (B → C)Hydrolysis of isomer C gives the unknown imino amines R—NH—CH2-C(CH3)=N—R in quantitative yield.  相似文献   

20.
The gaseous products of the photolysis at 25°C of the platinacyclobutane compounds [X2PtCH2CH2CH2(N-N)] where X = Cl, Br and N-N = 1,10-phenanthroline, 2,2′-bipyridine, (CH2NMe2)2, (C5H5N)2 in several solvents, in the absence and presence of various additives, have been determined. With solvents of relatively low dielectric constant (e.g. CH2Cl2), over 85 mol % of the hydrocarbon products was propene, the formation of which appears to involve a direct transfer of a hydrogen atom between neighbouring groups in the ring. With solvents of relatively high dielectric constant (MeCN, Me2SO) in the presence of species, e.g. I?, SbPh3, having a high trans effect, cyclopropane is the main volatile product. The effect of added halide ion and of the mixed solvents Me2SO/PhMe and Me2SO/PhSH indicates that ionisation of the platinacyclobutane and the formation of platinum substituted propyl ion-radicals precede the formation of cyclopropane (and the small amounts of ethylene produced).The photolysis of [X2PtCH2CH2CH2(MeCN)2] in methyl cyanide solution in the presence of Et3RNX′ (X′ = Cl, R = H; X′ = Br, R = Et) gives appreciable amounts of ethylene in the products (up to 25 mol %). It is suggested that the halide ions add to the platinum to give negatively charged platinacyclobutane species, the photodecomposition of which may give C2H4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号