首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble bridged polysilsesquioxanes with a range of molecular weight were synthesized from bis(triethoxysilyl)ethane, ethylene, and acetylene (BTES-E1, -E2, and -E3) via hydrolysis and polycondensation reaction by adjusting the water amount. Polymerization behavior of these three trialkoxysilanes was investigated by monitoring the reaction progress by GPC, and 29Si NMR spectrometry of the resulting polymers, poly(BTES-E1), poly(BTES-E2), and poly(BTES-E3), showing that BTES-E1 generated cyclic oligomers at the early stage. In contrast, polymerization of BTES-E2 and BTES-E3 provided no detectable amounts of cyclic oligomers, but afforded linear polymers only. Bulk gels were also prepared by curing the polymers. The gel from poly(BTES-E3) exhibited high thermal stability derived from the rigid acetylene spacer with respect to thermogravimetric analysis. On the other hand, the polymer film of BTES-E1 showed the highest pencil hardness index among the polymers, indicating the tight siloxane network of poly(BTES-E1).  相似文献   

2.
《European Polymer Journal》2006,42(11):3068-3077
A series of novel conjugated polymers, poly[(silylene)diacetylene silazanes] having different substituents on silicon were prepared by ammonolysis of the corresponding α,ω-dichlorodiorganosilylenediacetylene oligomers. The polymers had the number-average molecular weight between 700 and 2800, and the polydispersity index between 1.07 and 1.43. The polymers showed good solubility in common organic solvents. The structures of the poly[(silylene)diacetylene silazanes] were characterized by Fourier transform infrared, 1H, 13C, 29Si NMR, elemental analyses, and gel permeation chromatography. The thermal properties were measured with thermogravimetric analysis and differential scanning calorimetry. The resulting polymers had good thermal stability, and the DSC showed lower glass-transition temperature (Tg). They had good processability due to non-crystallization. Treatment of these polymers at appropriate temperature led to thermal polymerization of the acetylene unit to form a new cross-linking network system. These polymers have the potential to be used as precursors for Si/C/N-based ceramics.  相似文献   

3.
A series of novel conjugated polymers, poly(silylacetylene silazane)s having different substituents, were prepared by ammonolysis of the corresponding α,ω‐dichlorosilyleneacetylene oligomers. The structures and properties of the poly(silylacetylene silazane)s were characterized by Fourier transform infrared, 1H, 13C, 29Si NMR, and elemental analyses, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, and spectrofluorophotometry. The resulting polymers had good thermal properties and were moderately fluorescent. Their thermal stability was improved, and obvious red shift was observed when a phenyl substituent was attached on a silicon atom of polymers in the emission spectra. These polymers have the potential to be used as light‐emitting materials with good thermal stability. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2897–2903, 2004  相似文献   

4.
5.
The kinetics of photodegradation and the reactivity of different sites of the low‐band‐gap polymers poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b:3,4‐b′]dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] (C‐PCPDTBT) and poly[2,6‐(4,4‐bis‐(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] (Si‐PCPDTBT) are investigated as thin films and are compared to those of poly(3‐hexylthiophene) (P3HT). The decay kinetics are monitored with UV/Vis spectroscopy and the reactivity and product evolution are investigated with X‐ray photoelectron spectroscopy (XPS). Both polymers exhibit higher stability than P3HT. The bridging atom in the cyclopentadithiophene (CPDT) subunit has a significant influence on the stability. Varying oxidation rates for the different elements were observed. In the case of Si‐PCPDTBT, the silicon atom is oxidized primarily, whereas the photooxidation rates of the other elements are reduced relative to C‐PCPDTBT. Additionally, XPS experiments with varying excitation energies reveal a significant reaction gradient within a few nanometers of the surface of degraded thin films of C‐PCPDTBT.  相似文献   

6.
A new diamine was prepared via reaction between 8-hydroxy-5-nitroquinoline and 4-nitrobenzoyl chloride, followed by reduction of the nitro groups of the resulted compound. Novel quinoline-based poly(ester-amide)s were produced through polycondensation reactions of the prepared diamine with different diacid chlorides. The monomer and poly(ester-amide)s were characterized and properties of the polymers including solution viscosity, thermal behavior and stability, solubility, and crystallinity were studied.

High thermal stability and improved solubility was observed for the polymers, indicating successful designing of monomer and related polymers for overcoming the main issue of thermally stable polymers, i.e. the problem of increasing solubility versus high thermal stability.

Also, by changing the diacid chlorides for the preparation of poly(ester-amide)s, the structure-property relations were investigated.  相似文献   

7.
Differential scanning calorimetry and thermogravimetry were used to examine the thermal behaviour of the multimonomers poly(2-methacryloyloxyethyl methacrylate) and poly(2-acryloyloxyethyl methacrylate), of the ladder polymers prepared by the template polymerization of these multimonomers, and of a linear analogue of the ladder polymers, poly(2-butyrylethyl methacrylate). The results obtained show that only one of the ladder polymers has a considerably higher thermal stability than that of their linear analogue. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Polysiloxanes [? R2Si? O? ]n, polyphosphazenes [? R2P?N? ]n, and polysilanes [? R2Si? ]n illustrate that the incorporation of inorganic elements into a polymer main chain can lead to useful properties. These include low temperature flexibility, high thermal and oxidative stability, flame retardancy, novel forms of chemical reactivity, and intriguing electrical and optical characteristics arising from unusual electronic effects such as the delocalization of σ electrons. However, until recently, the development of inorganic polymer science has been held back by the synthetic problem of finding ways to join atoms of inorganic elements together into long chains. This review surveys many of the exciting advances in the field of inorganic polymers over the past decade and focuses mainly on the new inorganic polymer systems that have been prepared during this period. These include random-network polysilynes, poly(carbophosphazene)s, sulfur–nitrogen–phosphorus polymers, poly(organooxothiazene)s, and, very recently, the first examples of polystannanes that possess a main chain of tin atoms. Transition metal based polymer science has also experienced a number of synthetic break-throughs and new materials include high molecular weight metallocene-based polymers, polymetallaynes incorporating elements such as iron, nickel, and rhodium, liquid crystalline organocobalt and organochromium polymers, and lanthanide-based polymers.  相似文献   

9.
Evidence of only a low barrier to inversion in Si? O? Si sequences could be important with regard to the interpretation of the statistical properties of silicone polymers. The effects are estimated for the temperature coefficients of the unperturbed dimensions, dipole moments, and optical-configuration parameter for poly(dimethylsiloxane).  相似文献   

10.
Poly(ethylene succinate) and poly(butylene succinate) are synthetic biodegradable polymers, and much attention is paid to study the properties of pure polymers and the polymers modified by different comonomers and filling materials. The literature data on the physical properties of these polymers vary widely depending on their method of preparation and subsequent modifications. Most of the studies deal with low- and moderate-molecular-weight polymers or commercial grade polymers, modified by different comonomers and chain-extension agents. The data on pure high-molecular-weight polymers are scarce. In this work, we have prepared high-molecular-weight (MW range of (1.4–1.8) × 105) poly(ethylene succinate) and poly(butylene succinate) by direct polycondensation at 200°C in a nitrogen flow without chain-extension agents. We have further studied the properties of pure polymers and examined the effect of different fillers (carbon nanotubes, SiO2, Aerosil®) on the mechanical and physical properties of these polymers. Because of high-molecular-weight, the polymers possess increased tensile and storage moduli and thermostability. Even very low filler contents (up to 1 wt %) have a pronounced influence on the polymer properties: the polymer tensile and the storage modulus increases, the elongation at break decreases, and the thermal stability of the polymers decreases slightly. The effects of fillers are less pronounced compared with those for low- and moderate-molecular-weight polymers. When mixed together, poly(ethylene succinate) and poly(butylene succinate) crystallize independently from each other as evident from the mechanical and thermal analysis data.  相似文献   

11.
Poly (ferrocenyl glycidyl ether) was synthesized by polymerization of 2-[(4-ferrocenylbutoxy)methyl]oxirane (FcEpo) using toluene solution of methylaluminoxane as the catalyst. Copolymerization of 2-[(4-ferrocenylbutoxy)methyl]oxirane with epichlorohydrin was used for the synthesis of another ferrocenyl based poly (epichlorohydrin). Ferrocenyl based poly (glycidyl azide), GAP, was synthesized by treatment of sodium azide with this copolymer in DMF as solvent at room temperature. The synthesized ferrocenyl based polymers were characterized by FT-IR, 1HNMR, UV–Vis, TGA, DSC and GPC analysis. The UV–Vis spectra of synthesized polymers show the absorption band of ferrocene moiety at about 450 nm. The TGA and DSC analysis show that poly (ferrocenyl glycidyl ether) has good thermal stability. The TGA analysis shows that the copolymerization of 2-[(4-ferrocenylbutoxy)methyl]oxirane with epichlorohydrin improved the thermal stability of the copolymer. The GPC analysis of poly (ferrocenyl glycidyl ether), ferrocenyl based poly (epichlorohydrin) and Ferrocenyl based poly (glycidyl azide) show the PDI between 1.14–1.17. The electrochemical behavior of synthesized polymers was investigated by cyclic voltammetry (CV) measurements. The CV curves of synthesized polymers show good electrochemical performance and there is one redox system with the single-electron reversible reaction that associated with ferrocene moiety in polymers structure. The anodic and cathodic peak currents increased with scan rate confirmed redox reactions in the system are kinetically fast diffusion-controlled reactions.  相似文献   

12.
Substituent‐induced electroluminescence polymers—poly[2‐(2‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(o‐R3Si)PhPPV], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(m‐R3Si)PhPPV], and poly[2‐(4‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(p‐R3Si)PhPPV]—were synthesized according to the Gilch polymerization method. The band gap and spectroscopic data were tuned by the dimethyldodecylsilyl substituent being changed from the ortho position to the para position in the phenyl side group along the polymer backbone. The weight‐average molecular weights and polydispersities were 8.0–96 × 104 and 3.0–3.4, respectively. The maximum photoluminescence wavelengths for (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV appeared around 500–530 nm in the green emission region. Double‐layer light‐emitting diodes with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Al configuration were fabricated with these polymers. The turn‐on voltages and the maximum brightness of (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV were 6.5–8.7 V and 1986–5895 cd/m2, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2347–2355, 2004  相似文献   

13.
Carbocationic polymerization of N-ortho/meta/para tolyl-exo-norbornene dicarboximide (nadimide) was carried out using Pd(II) catalyst. Under similar conditions of polymerization, poly(N-m-tolyl nadimide) showed higher molecular mass compared to poly(N-p-tolyl nadimide) and poly(N-o-tolyl nadimide). Thermal stability of these polymers was evaluated by dynamic thermogravimetry in nitrogen atmosphere. The polymers were stable up to 460°C and lost mass above this temperature in a single step. The characteristic decomposition temperature and char yield of these polymers were higher than the polymers prepared by using ring opening metathesis polymerization. The difference has been attributed to the presence of rigid bicyclic ring structure in these polymers.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
Biomacromolecules, such as enzymes are widely used for biocatalysis, both at academic and industrial level, due to their high specificity and wide applications in different reaction media. Herein, taking GOx as a representative enzyme, in‐situ RAFT polymerization of four different monomers including acrylic acid (AA), methyl acrylate (MA), poly (ethylene glycol) acrylate (PEG‐A) and tert‐butyl acrylate (TBA) were polymerized directly on the surface of GOx to afford GOx‐poly (PEG‐A)(GOx‐PPEG‐A), GOx‐poly(MA)(GOx‐PMA), GOx‐poly(AA)(GOx‐PAA), and GOx‐poly(TBA)(GOx‐PTBA) conjugates, respectively. Thereinto, PAA and PPEG‐A represent the hydrophilic polymers, while PMA and PTBA stand for the hydrophobic ones. Effects of different polymer on the properties of GOx were investigated by measuring the bioactivity and stability of the as‐prepared and different GOx‐polymer conjugates. Higher bioactivity was obtained for GOx modified with hydrophilic polymers compared with that modified with hydrophobic ones. All the tested polymers can enhance the stability of the GOx, while the hydrophobic GOx‐polymers conjugates exhibited much better stability than the hydrophilic ones. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1289–1293  相似文献   

15.
A series of poly(aryl ether-bissulfone)s were synthesized from bis-phenols, 4,4′-bis(4-chlorophenylsulfonyl)biphenyl, and 4,4′-bis(4-fluorophenylsulfonyl)biphenyl. The bishalide monomers were synthesized by reaction of 4,4′-bis(chlorosulfonyl)biphenyl with a suitable aryl halide. Potassium carbonate mediated reaction in di-methylacetamide gave high molecular weight polymers in excellent yield. The polymers are soluble in dipolar aprotic solvents. Unlike the corresponding monosulfone analogues, the poly(aryl ether-bissulfone)s exhibited poor solubility in chlorinated hydrocarbons. The glass transition temperatures of the polymers are among the highest known for poly(aryl ether)s (241-271 °C). In addition, the polymers exhibit excellent thermal stability and they produce clear, colorless tough films by solution casting or compression molding.  相似文献   

16.
Novel poly(silylenemethylene)s have been prepared by the ring‐opening polymerization of 1,3‐disilacyclobutanes followed by a protodesilylation reaction with triflic acid. The silicon–aryl bond cleavage could be controlled by using different leaving groups, for instance phenyl‐ and para‐anisyl substituents. The reactions of the triflate derivatives with organomagnesium compounds, LiAlH4, amines or alcohols gave functional substituted poly(silylenemethylene)s. Hydrosilylation reactions or reductive coupling with potassium–graphite led to organosilicon network‐polymers, which may serve as suitable precursors for silicon carbide and Si/C/N‐based materials. The structures of the polymers were identified by nuclear magnetic resonance spectroscopy (29Si, 13C, 1H). Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
<正>Novel main-chain-conjugated poly(carbazol-alt-squaraine) and poly(dipyridyl-alt-squaraine) were successfully synthesized through direct polycondensation of 9-(2-ethylhexyl)carbazole-bridged or dipyridyl-bridged bispyrrole and squaric acid.The structures and properties of the polymers were characterized using ~1H NMR,FT-IR,UV-vis and cyclic voltammetry.Both polymers exhibit excellent solubility in common organic solvents and good thermal stability.Their UV-vis absorption spectra indicated the polymers have broad and strong spectral responses from 200 nm to 900 nm,which reveals a low optical band gap around 1.38 eV, suggesting that they may be promising candidates for organic solar cells.  相似文献   

18.
Novel poly(amide-sulfonamide)s have been prepared by reacting terephthaloyl, isophthaloyl, and sebacoyl chloride with variously substituted dianilines containing preformed sulfonamide linkages. Inherent viscosities of the prepared polymers ranged from 0.19 to 0.58 dL/g. Despite low apparent viscosities, the polymers had film forming properties. Clear, tough, flexible films were obtained from the prepared polymers, in particular the poly(terephthalamide-sulfonamide)s. Glass transition temperatures, determined by differential scanning calorimetry, ranged from 84 to 247°C. Thermogravimetric analyses of the polymers showed that they have moderate thermal stability with weight losses ranging from 12 to 35% at 350°C.  相似文献   

19.
 Polymer-free and polymer-bearing small unilamellar (SUV) liposomes from dimyristoyl-phosphatidylcholine (DMPC) were prepared under standardized conditions. Polymer-bearing liposomes were formed by incorporating an uncharged polymer [hydrolyzed poly(vinyl alcohol) (PVA), poly(vinyl alcohol-co-vinylacetal) (PVA-Al), poly(vinyl alcohol-co-vinyl propional) (PVA-Prol) poly(vinyl alcohol-co-vinyl butiral) (PVA-Bul) copolymer or poly(vinyl pyrrolidone) (PVP)] into the membrane bilayer of vesicles. The kinetic (long-term) stability of the liposome dispersions stored in distilled water, in physiological NaCl solution and at various pH values, respectively, were studied. The physical stability of vesicles was tested by measuring the size and the zeta potential of liposomes by means of a Malvern Zetasizer 4 apparatus. It was shown that most of these polymers are effective steric stabilizers for the DMPC-liposomes. Among the polymers, the PVA-Bul and PVA-Prol copolymers and the PVP of high molecular mass exhibited the most efficient stabilizing effect at each pH studied, indicating that the formation of a relatively thick polymer layer around the lipid bilayers ensures an enhanced and prolonged physical stability of liposomes. Also, the butiral or propional side chain in the PVA-based copolymers presumably promotes the anchoring of macromolecules to the vesicles. Using these macromolecules, the colloidal interactions between vesicles can be modified and so the physical stability of liposomes and the kinetic stability of liposome dispersions can also be controlled. Received: 20 May 1997 Accepted: 03 September 1997  相似文献   

20.
The building-block strategy is applied to the synthesis of new compounds with two five-membered heteroaromatic units. The heteroaromatic rings contain a fluorine atom which is activated towards nucleophilic displacement reactions by an adjacent trifluoromethyl group. The difunctional compounds can be converted into poly(arylene ether)s by base-catalyzed polycondensation with bisphenols or bisthiophenols. Trifluoromethylated poly(arylether oxazole)s and poly(arylthioether oxazole)s are obtained by this route. All representatives of these two new classes of polymers are soluble in common organic solvents. Reaction conditions for the polycondensation as well as thermal stability, glass transition temperatures, and molar masses of the polymers are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号