首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of [{Ir(COD)(μ-Cl)}2] with excess of the electron-rich olefin [CN(Ar)(CH2)2NAr]2 (abbreviated as (LAr)2, Ar = C6H4Me-p or C6H4OMe-p) affords the ortho-metallated tricycle [Ir(LAr)3], which for Ar = C6H4Me-p (Ia) with HCL yields [Ir(LAr)2(LAr)]Cl (IV); X-ray data show that in IV there is an unexpectedly close Ir?C(o-aryl) contact (2;52(1) Å) involving the “free” LAr which compares with an IrC(o-aryl) distance of 2.09(3) Å in Ia or 2.07(3) Å in the ortho-metallated LAr ligand of complex IV.  相似文献   

2.
Reaction of R—N=CH—CH=N—R with [(CH3)3Al]2 affords the coordination product (CH3)3AlRN=CH—CH=NR (A) for R = 2,6-(CH3)2C6H3 and 2,4,6(CH3)3C6H2. For R = 4 ClC6H4, 4-CH3C6H4 and 4-CH3OC6H4, insertion takes place, giving the complexes (CH3)2AlRN—CH(CH3)—CH=N—R (B), in which Al is part of a five-membered chelate ring. Depending on the temperature both the addition and insertion products rearrange intramolecularly to the complexes (CH3)2-AlR—N—CH2—C(CH3)=N—R (C), in which Al is also part of a five-membered chelate ring. Reactions of the asymmetric (CH3)2HC—N=CH—C(CH3)=N—CH-(CH3)2 with [Al(CH3)3]2 also leads to an insertion product, (CH3)2AlRN-—CH(CH3)—C(CH3)=N—R (B') (R = (CH3)2CH), but there is no subsequent rearrangement in this case.A mechanism involving hydrogen migration is tentatively proposed to account for the observed isomerization, which increases in rate in the order:R = (CH3)3C>2,4,6-(CH3)3C6H2> 2,6-(CH3)2C6H3 (A → C)andR = 4-CH3OC6H4>4-CH3C6H4>4-ClC6H4 (B → C)Hydrolysis of isomer C gives the unknown imino amines R—NH—CH2-C(CH3)=N—R in quantitative yield.  相似文献   

3.
Treatment of Ir2Cl2(C8H14)4 with the phosphines t-Bu3?nP(CH2CMe3)n (n = 3,2,1) in hot toluene followed by crystallization of the products from C7H8/ EtOH mixtures gave the cyclometallated hydrides (C8H14)2Ir-μ-Cl2IrH[CH2CMe2CH2P(CH2CMe3)2][P(CH2 (I) [t-BuP(CH2CMe3)2]2H2Ir-μ-Cl2IrH[CH2CMe2CH2PBut(CH2CMe3)][t-BuP(CH2CMe3)2] (II), and [(t-Bu2PCH2CMe2CH2)HIrCl]2 (III). The dihydrides IrH2Cl[t-BuP(CH2CMe3)2]2 (IIa) and IrH2Cl(t-Bu2PCH2CMe3)2 (IIIa) were also isolated; these species were, however, more conveniently obtained by bubbling hydrogen through the solution of Ir2Cl2 (C8H14)4 and the respective phosphine in toluene. i-Pr3 reacted with the olefiniridium(I) precursor in C7H8/EtOH to yield the carbonyl complexes (i-Pr3P)2H2Ir-μ-Cl2Ir(CO)(PPri3)2 (IV) and IrCl(CO)(PPi3)2 (IVa), no cyclometallated product being detected. The stereochemistries of the complexes were deduced from IR, 1H, 31P, and 13C NMR data. The crystal structures of IIIa and IVa were also determined.  相似文献   

4.
Reactions between MX(PPh3)2(η-C5H5) (M = Ru, X = Cl; M = Os, X = Br) and 2-CH2CHC6H4PPh2 afford MX(η2-CH2CHC6H4PPh2)(η-C5H5); the Os complex is obtained in two isomeric forms. The X-ray structure of the major isomer shows the CC double bond (OsC, 2.214, 2.195 Å; CC, 1.57 Å) is almost coplanar with the OsBr vector, with the terminal C cis to Br; the minor isomer is assumed to have the alternative, more sterically congested conformation, with the β-C cis to Br. The chlororuthenium complex reacts with NaOMe/MeOH to give the corresponding hydrido complex, which also exists as two isomers in solution; reaction of this complex with CS2 gives the expected dithio acid derivative Ru(S2CCHMeC6H4PPh2)(η-C5H5), together with small amounts of a complex assumed to be Ru[S2C(CH2)2C6H4PPh2](η-C5H5). The X-ray structure of the major product reveals an unusual η3-S2C mode of coordination of the dithio acid fragment (RuS, 2.418, 2.426(1) Å; RuC 2.175(4) Å). Crystals of OsBr(η2-CH2CHC6H4P)Ph2)( η-C5H5) are monoclinic, space group P21/n, with a 12.696(2), b 21.719(6), c 15.929(3) Å, β 79.77(2)°, Z = 8; 2867 data (I > 2.5σ(I)) were refined to R = 0.040, Rw = 0.044. Crystals of Ru(η3-S2CCHMeC6H4PPh2)(η-C5H5) are orthorhombic, space group Pbca, with a 8.921(2), b 15.982(9), c 32.216(5) Å, Z = 8; 1685 data (I > 2.5σ(I)) were refined to R = 0.027, Rw = 0.030.  相似文献   

5.
The reaction of O,O′-diisopropylphosphoric acid isothiocyanate (iPrO)2P(O)NCS with 2-methylaniline 2-MeC6H4NH2, 2,6-dimethylaniline 2,6-Me2C6H3NH2, or 2,4,6-trimethylaniline 2,4,6-Me3C6H2NH2 leads to the N-phosphorylated thioureas RNHC(S)NHP(O)(OiPr)2 (R = 2-MeC6H4?, HLI ; 2,6-Me2C6H3?, HLII ; 2,4,6-Me3C6H2?, HLIII ). Reaction of the potassium salts of HLI III with Ni(II) in aqueous EtOH leads to [Ni(LI–III-N,S)2] ([NiLI–III 2 ]) chelate complexes. The compounds obtained were investigated by 1H, 31P{1H} NMR spectroscopy and microanalysis. The molecular structure of the thiourea HLIII was elucidated by single crystal X-ray diffraction analysis. Single crystal X-ray diffraction studies showed that HLIII forms both intra- and intermolecular hydrogen bonds, which in turn leads to the formation of polymeric chains. One of the intermolecular hydrogen bonds is of the type N?H…S. Moreover, the formation of intermolecular C?H…η6-phenyl interactions was established.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

6.
In the 1H NMR spectrum of the complex [Os3H3(CO)9CC(CH2CH2]+ at 30°C, under conditions of rapid exchange, the single hydride resonance has two sets of satellites of equal intensity (separated by 32.0 and 28.8 Hz) caused by 187Os1H spin—spin coupling. The spectral data rule out the upright carbenium ion structure for the complex, and are consistent with the fluxional process involving hydrocarbon ligand rotation about the CC(CH2)2CH2 axis in a tilted structure, with concomitant rotation of the Os3H3(CO)9 moiety.  相似文献   

7.
The preparation of the first mixed metal cyclometallated compounds [ClPd(p-RC6H3CHNNCH(p-RC6H3))PtCl]n (R = H, Cl) are reported; they were made from monocyclopalladated [(AcO)Pd(p-RC6H3CHNNCH(p-RC6H4)]2 and PtCl42?.  相似文献   

8.
1,1′-Disubstituted Titanocene Dithiolene Chelates of Type (η5-Me3EC5H4)2Ti(S2C2R2) (E = C, Si, Ge) Reaction of the titanocene dichlorides (η5-Me3EC5H4)2TiCl2 (E = C, 1a ; E = Si, 1b ; E = Ge, 1c ) with the 1,2-dithiolates (NaS)2C2H2, (NaS)2C2(CN)2 or (LiS)2C6H3Me-4 gave the new titanocene dithiolene chelates (η5-Me3EC5H4)2Ti(S2C2H2) ( 2a–c ), (η5-Me3EC5H4)2Ti[S2C2(CN)2] ( 3a–c ) and (η5-Me3EC5H4)2Ti(S2C6H3Me-4) ( 4a–c ). These have been characterized by 1H NMR, IR, and mass spectroscopy, and have been compared with the unsubstituted η5-C5H5 analogues 2d, 3d and 4d . Activation energies for the chelate ring inversion in solution of 2a–c, 3a–d and 4a–c have been estimated by temperature-dependent 1H NMR spectroscopy.  相似文献   

9.
A reinvestigation of the reaction between C2(CO2Me)2 and RuH(PPh3)2(η-C5H5) and some related complexes is reported. Initial cis addition is followed by conversion into the trans isomer. In the case of the bis-(PPh3) complex, isomerisation is followed by chelation of the ester CO group with concomitant displacement of one PPh3ligand. The resulting chelate complex reacts with CO or CNBut to give the (Z)-RuC(CO2Me)CH(CO2Me) complexes; the (E)-isomer of the carbonyl complex is obtained by addition of C2(CO2Me)2to RuH(CO)(PPh3)(η-C5H5). The 1Hand 13C NMR spectra are not a reliable guide to assignment of the stereochemistry of the vinyl group. Other products isolated from the initial reaction are the bis-insertion product Ru{C(CO2Me)C(CO2Me)C(CO2Me)CH(CO2Me)} -(PPh3)(η-C5H5) and the 1/2 PPh3/C2(CO2Me)2 adduct. The molecular structures of Ru{(Z)-C(CO2Me)CH(CO2Me)}(CO)(PPh3(η-C5H5) · 0.5EtOH, Ru{(E)-C(C2Me)CH(CO2Me)}(dppe)(η-C5H5) and Ru{C(CO2Me)C(CO2Me)C(CO2-Me)CH(CO2Me)}(PPh3)(η-C5H5) have been determined. The cis isomer is monoclinic, space group P21,with a 9.328(8), b 17.385(10), c 10.356(7) Å, β 101.78(3)° and Z = 2; 2107 data with I ≥ 2.5σ(I) were refined to R = 0.076 Rw = 0.085. The trans isomer is triclinic, space group P1, with a 10.404(7) b 11.221(6), c 13.230(9) Å, α 92.67(5), β 110.56(5), γ 106.21(5)° and Z = 2; 2520 data with I ≥ 2.5σ(I) were refined to R = 0.055 Rw = 0.068. The butadienyl complex is monoclinic, space group P21/a, with a 19.655(8), b 8.674(4), c 21.060(5) Å, β 116.22(3)° and Z = 4; 2724 data with I ≥ 2.5σ(I) were refined to R = 0.042, Rw = 0.047.  相似文献   

10.
The addition of trimethylphosphane to five-membered metallacyclic vinylketone complexes of the type ArM(CO)2(HCCHCOR) (I) (Ar = η5-aromatic ring system: C5H5, C5H4Me, C5Me5; R = Me, Et, n-Bu; M = Mo, W) in pentane solution results in the formation of the ylidic metallacyclopropane complexes ArM(CO)2[(PMe3)-HCCH(COR)] (II). In these 1:1 adducts the three-membered ring is stabilized by an electron-donating phosphonium and an electron-attracting acyl substituent. The negative charge in the ylidic complexes II is localized on the central metal providing it with Lewis base properties. An extraordinary high electron density can be observed on the metal of the derivative C5H5W(CO)(PMe3)[(PMe3)HCCH-(COMe)] (III) which is formed by a 1:2 addition of C5H5W(CO)(C2H2)-(COMe) and PMe3. The metallacyclopropane complexes II and III are characterized by IR, 1H NMR, 13C NMR, 31P NMR and mass spectroscopy. For C5H5W(CO)2[(PMe3)HCCH(COMe)], the results of an X-ray structure determination are presented.  相似文献   

11.
The amine substituted phosphines (C6H5)2PN(H)CH2CH3 and (C6H5)2PN(H)CH2C6H5 react with C5H5Fe(CO)2CH(C6H5) (OCH3) photolytically to give moderate yields of the four-membered chelate ring complexes C5H5Fe (CO) [(C6H5)2PN (CH2CH3) CH (C6H5)] and C5H5Fe (CO) [(C6H5)2 PN (CH2C6H5)CH(C6H5)], respectively. Photolysis of C5H5Fe(CO)2CH(C6H5) (OCH3) in the presence of (S)-(?)-diphenyl(1-phenylethylamino)phosphine leads to the isolation of C5H5Fe(CO)[(C6H5)2PNC(CH3) (C6H5)]CH2C6H5 which is proposed to arise from a formally 1,3-hydrogen shift rearrangement of an intermediate four-membered chelate ring complex.  相似文献   

12.
C5H5FeC5H4CH2NMe2 reacts with sodium chloropalladate(II) in the presence of sodium acetate to give the internally metallated binuclear species [Pd2X2 {C5H5FeC5H3CH2NMe2}2] (X = Cl). The corresponding iodide was prepared as were mononuclear species [Pd(acac) {C5H5FeC5H3CH2NMe2}] and [Pd-{C5H5FeC5H3CH2NMe2}L] L = PMe2Ph, AsMe2Ph, P(OMe)3 or PPh3. 1H NMR data are given.  相似文献   

13.
η5-C5H5(CO)2FeNa reacts with the benzimide chlorides C6H5(Cl)CNR (R  CH(CH3)2, C6H5) in boiling THF to give the η1-iminoacyl complexes η5-C5H5 (CO)2Fe[η1-C(C6H5)NR]. Alternatively, the new Fe complexes [η5-C5H5(CO)FeC(C6H5)N(CH3)C(C6H5)NCH3PF6 (IV) and [η5-C5H5(CO)2FeC(C6H5)N(CH3)C(C6H5)NCH3]PF6 (V) are formed under the same conditions, if R  CH3. Hudrolysis of the CN single bond of the ligand in V, not stabilized by a chelate effects as in IV, results in the formation of [η5-C5H5(CO)2FeC(C6H5)NHCH3]PF6 (VII). Reaction of η5-C5H5(CO)2 with N-benyzylbenzimido chloride yields η5-C5H5(CO)2FeCH2C6H5 as the only isolated product.  相似文献   

14.
Variable temperature 1H NMR spectroscopy has been used in the study of 1,3-intramolecular shifts of the M(CO)5 moiety in complexes of the general formula [M(CO)5L], (M = Cr or w), L = SCH2SCH2SCH2, SCH2SCH2CH2CH2 and SCH(Me)SCH2CH2CH2. For the 1,3,5-trithian complexes precise energy barriers for the process have been obtained by detailed computer simulation of the static and dynamic spectra. Our results suggest that the magnitude of ΔG (298.15 K) for the 1,3-shift is largely dependent upon the skeletal flexibility of the ligand system. In this context we have investigated the X-ray crystal structure of the highly substituted trithian complex [W(CO)5{β-SCH(Me)SCH(Me)SCH(Me)}].  相似文献   

15.
The cyclometallation of p-RC6H4CHNCH2C6H2, (R = H, Cl, NO2) by PdX2 (X = Cl, AcO) has been studied.In every case the cyclometallation occurs with formation of a five-membered ring containing the methine group. The structure of these compounds [PdX(p-RC6H3CHNCH2C6H5)]2, derived from 1H NMR spectra, are different from those reported previously. Reaction of these compounds with PEt3 gives the compounds [PdX(p-RC6H3CHNCH2C6H5)(PEt3)2] but with an excess of PPh3 only the complexes [PdX(p-RC6H3CHNCH2C6H5)(PPh3)] are formed.  相似文献   

16.
Solid solutions of GeO2 in Fe2O3 were prepared by mechanically mixing the solids and firing at 1000°C in air, and from a gel obtained by the addition of an alcohol solution of germanium ethoxide to iron dissolved in HNO3. The dried gel was then heated at 1000°C. The solubility limit is 5 mole% GeO2, Fe1.95Ge0.05O3. Similar procedures were used to prepare solid solutions with Si and the solubility limit is greater than 4 mole% SiO2. Firing of mixtures or gels of Fe2O3 containing Mg produces a spinel phase even at the lowest detectable concentrations. The resistivity of pressed pellets of Fe2?xGexO3 varies from about 106 ohm-cm for x = 0 to about 10?1 ohm-cm for x = 0.05. The photoassisted electrolysis of water at Ge-doped Fe2O3 electrodes is demonstrated. The Fe2O3(Ge)0.7 M Fe(CN)4?6, 0.05 M Fe(CN)3?6Pt photoelectrochemical cell showed a 0.29-V open-circuit voltage, 1.2-mA/cm2 short-circuit current, 0.31 fill factor, and 0.06% power efficiency.  相似文献   

17.
18.
The synthesis and structural characterization by 1H NMR and 197Au Mössbauer spectroscopy as well as by chiral labelling of the built-in ligands of three different types of arylgold(I) compounds is described.197Au Mössbauer data revealed that the benzyl- and arylgold(I) triphenylphosphine complexes which bear potential coordinating substituents at an ortho position still contain linearly coordinated AuI with 2c-2e gold(I)carbon bonds. The observation of isochronous NME resonances in (S)-2-Me2NCH(Me)C6H4AuPPh3 confirms that no additional intramolecular AuN coordination occurs in solution. Preliminary results of an X-ray diffraction study of 2,6-(MeO)2C6H3AuPPh3 are reported (R = 0.040, PAuC1 angle 172.6°. Unsymmetrical AuC1C2 and AuC1C6 angles of 126.4 and 117.4°, respectively).Pure, uncomplexed arylgold(I) compounds have been isolated from the reaction of diarylgoldlithium compounds (arylaurates) with trimethyltin bromide. (S)-2-Me2NCHMeC6H4Au has a dimeric structure which most likely consists of two monomeric units associated by intermolecular AuN coordination thus forming a ten-membered chelate ring. The structure of insoluble 2-Me2NCH2C6H4Au and 2-Me2NC6H4Au are less clear. The former compound probably has a structure similar to (S)-2-Me2NCHMeC6H4Au (IS/QS values for two-coordinate AuI centers). However, the strongly deviating IS and QS values of 2-Me2NC6H4Au indicate that a polynuclear structure for this compound similar to that proposed for 2-Me2NC6H4Cu cannot be excluded (a polymeric structure containing 2-Me2NC6H4 groups which span three Au atoms by 3c-2e Au2C bonds and AuN coordination).The mixed Au/Cu cluster (2-Me2NCH2C6H4)4Au2Cu2 is accessible via the 12 reaction of (2-Me2NCH2C6H4)4Au2Li2 with CuI. Molecular weight and 1H NMR studies point to a tetranuclear structure in solution, while mass spectrometry shows fragment ions with m/e corresponding to (2-Me2NCH2C6H4)3Au2Cu2+, (2-Me2NCH2C6H4)3Cu2Au+, (2-Me2NCH2C6H4)2CuAu2+ and of (2-Me2NCH2C6H4)2Au+.  相似文献   

19.
The kinetics of the reaction of arylcyclopropanes (4-XC6H4C3H5, X = H, Me, EtO) with either [Pt2Cl2(μ-Cl)2(C2H4)2] or [{PtCl2(CH2CH2CH2)} in tetrahydrofuran to give in each case [{PtCl2(CHArCH2CH2)}4] and ethylene or cyclopropane, respectively, have been studied. The reactions are essentially first order in both arylcyclopropane and platinum complexes. The order of reactivity follows the series X = EtO > > Me > H, and [Pt2Cl2(μ-Cl)2(C2H4)2]> [{PtCl2(CH2CH2CH2)}4] and the rate is accelerated in polar solvents. Mechanisms in which the arylcyclopropane first coordinates to platinum and then undergoes ring opening reactions are proposed.  相似文献   

20.
The compounds Ba4Fe2S6[S23(S2)13] and Ba3.6Al0.4Fe2S6[S0.6(S2)0.4], designated I and II, were prepared by reacting BaS, Fe, and S powders and Al foils in graphite containers sealed in evacuated quartz ampoules at approximately 1100°C. The crystal structure of I was determined using 1682 independent, nonzero X-ray reflections, while 3589 were used for II. They are triclinic, Al:
a=9.002(2)A?,b=6.7086(8)A?,c=24.658(4)A?α91.49(2)°,
β=105.10(2)°y=90.74(2)°,ψcalc=4.15g/cm3,for I:
a=8.993(6)A?,b=6.708(7)A?,c=24.70(1)A?α91.11(6)°,
β=105.04(6)°y=90.90(9)°,ψcalc=3.90g/cm3,for II:
BaS6 trigonal prisms share edges to form distorted hexagonal rings which form one-dimensional chains leaving two free lateral edges. The chains link in a stairstep manner with the rings offset along the [301] direction. These stairsteps join in a complicated manner to form a three-dimensional network. Fe ions are in two sites forming isolated FeS4 tetrahedra and isolated Fe2S6 dimers by edge-sharing tetrahedra. The Al substitution occurs in the trigonal prisms which have free edges with Al replacing Ba. Room-temperature Mössbauer isomer shifts are 0.20 mm/sec. for I and 0.30 mm/sec for II. These data indicate that upon Al substitution charge compensation occurs by reducing Fe3+. Valence calculations indicate that Fe in edge-sharing tetrahedra are reduced while the Fe in the isolated tetrahedron remains unchanged. The effective charge distribution in the Al substituted compound is approximately Fe3+, Fe2.5+ with electron delocalization across the shared edge. Room temperature electrical resistivity is 105 ohm/cm. The compositions of the crystals are best represented by the formulas [Ba4Fe2S7]23·[Ba4Fe2S6(S2)]13 and [Ba3AlFe2S7]0.4·[Ba4Fe2S7]0.2·[Ba4Fe2S6(S2)]0.4. The replacement of a sulfide by a disulfide ion is thought to be strongly dependent on the sulfur activity during the preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号