首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
提出了一种阵列式线-线沿面介质阻挡放电结构,利用双极性高压纳秒脉冲电源,在大气压空气中激励产生了相对大面积的放电等离子体。其中,高压电极、地电极均为圆柱形金属,放电反应器由20组相间排列的阵列式线型高压电极和套有介质管的阵列式线型地电极组成。利用电压探头、电流探头、示波器等测量了放电电压和放电总电流,并计算得出了放电的实际电流。利用光纤、光栅光谱仪、CCD等测量了波长范围在300~440 nm和766~778 nm的发射光谱,即氮分子第二正带N2 (C3Πu→B3Πg)包括Δν= +1, 0, -1, -2, -3、氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)的发射光谱。比较了氮分子第二正带N2 (C3Πu→B3Πg)的各个振动峰和各个活性物种的发射光谱强度,以及这些发射光谱强度随着脉冲峰值电压的变化。测量了N2(C3Πu→B3Πg, 0-0)的二次、三次衍射光谱,与原始光谱在转动带、背景光谱等方面进行了比较,并计算了二次衍射和原始光谱之间的峰值比。利用氮分子第二正带N2 (C3Πu→B3Πg, Δν=+1, 0, -1, -2)和氮分子离子第一负带N+2 (B2Σ+u→X2Σ+g, 0-0)模拟了等离子体的转动温度和振动温度,对模拟结果进行了比较,并研究了脉冲峰值电压对等离子体振动温度和转动温度的影响。通过测量放电的电压和计算得到的放电电流发现,当脉冲峰值电压为22 kV,脉冲重复频率为150 Hz时,阵列式线-线沿面介质阻挡放电的放电电流在正脉冲、负脉冲两个方向上均可达75 A左右。通过诊断放电等离子体的发射光谱发现,在测量的波长范围内,放电产生的活性物种主要有氮分子第二正带N2 (C3Πu→B3Πg)、氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)。在脉冲峰值电压22~36 kV的变化范围内,氮分子第二正带N2(C3Πu→B3Πg, 0-0)的发射光谱强度始终保持最强,N2 (B3Πg→A3Σ+u)次之,而氮分子离子第一负带N+2(B2Σ+u→X2Σ+g)和O (3p5P→3s5S2)的发射光谱强度较弱。同时,当脉冲峰值电压升高时,氮分子第二正带N2 (C3Πu→B3Πg)的所有振动峰,以及氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)的发射光谱强度均随之升高。通过比较氮分子第二正带N2(C3Πu→B3Πg, 0-0)的原始、二次衍射、三次衍射光谱发现,二次、三次衍射光谱的转动带更清晰,但三次衍射光谱的背景更强,因此氮分子第二正带N2(C3Πu→B3Πg)的二次衍射光谱更有利于模拟等离子体的转动温度。通过比较模拟得到的振动温度和转动温度发现,氮分子第二正带N2 (C3Πu→B3Πg, Δν=-2)在N2 (C3Πu→B3Πg)四个谱带Δν=+1, 0, -1, -2中最适于模拟等离子体振动温度,而利用氮分子离子第一负带N+2 (B2Σ+u→X2Σ+g,0-0)模拟得到的等离子体转动温度要比N2 (C3Πu→B3Πg, Δν=-2)的模拟结果高约10~15 K。同时,当脉冲峰值电压升高时,由N2 (C3Πu→B3Πg, Δν=-2)和N+2 (B2Σ+u→X2Σ+g, 0-0)模拟得到等离子体的转动温度均出现了略微上升的趋势,而利用N2 (C3Πu→B3Πg, Δν=-2)模拟得出的振动温度则略微下降。  相似文献   

2.
为了加快低温氦气等离子体射流的工程化进程,通过自主设计的同轴式介质阻挡放电等离子体射流发生器,在放电频率10 kHz,一个大气压条件下产生了稳定的氦气等离子体射流.通过分析不同工况下的电压电流波形可以发现单纯增加氦气体积流量只能小幅的增加电流脉冲幅值,而对放电时间、电流脉冲数的影响不大.增加放电峰值电压时电流脉冲幅值会...  相似文献   

3.
使用介质阻挡放电光谱诊断装置,分析了常压等离子体放电电流与放电间隙的变化关系,提出了“放电临界间隙”的概念,记录和比较了空气和氩气常压介质阻挡放电等离子体发射光谱,并运用同一元素谱线的相对强度来诊断电子温度等物理参量,以达到对材料表面改性过程的实时监控。工作的结果对常压介质阻挡放电及其在材料改性中的应用具有重要的意义。  相似文献   

4.
大气压下介质阻挡放电应用领域具有多范畴、深广度、常态化等优势,针对同轴电极放电试验进行了系列参数诊断。采用自主研发的介质阻挡放电助燃激励器,在一个标准大气压、放电频率11.4 kHz、放电峰值电压5.4~13.4 kV(间隔1.0 kV)条件下进行了氩气电离试验。采用原子发射光谱法(AES)对氩等离子体谱线的激发、分光进行了检测分析;选用二谱线法及Boltzmann法测试了电子激励温度;根据Stark展宽效应计算了电子密度;获得了电子激励温度及电子密度随放电峰值电压增长的变化规律。结果表明,在试验电压条件下电子激励温度并不随外加电压的升高而递增,这表明通道内微放电的主要特征并不依赖于外部电压的供给,而是取决于气体组份、气体压强和放电模型,增大外加放电电压仅增加单位时间内微放电的数量,经整合电子激励温度可达3 500 K符合典型的低温等离子体特征;电子密度随外加电压的增长而趋于准线性趋势,电子密度数量级可达到108~109 cm-3,电离度偏弱。这些参数的探索对等离子体研讨有重大意义。  相似文献   

5.
大气压射流等离子体放电特性及其灭菌效果   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了一种同轴电极的射流等离子体发生装置,可以直接在大气中将生成的氦气辉光放电射流等离子体喷出进行杀菌消毒,无需反应容器和真空系统,并从电压、频率、流速等方面讨论了该同轴等离子体发生器的放电特性。在稳定的放电条件下,利用实验装置进行了大气压下的等离子体灭菌实验,验证了本装置在等离子体灭菌应用上的可行性和易操作性。灭菌结果表明:在最初的2 min内,细菌减小趋势明显,3 min后细菌几乎全部消亡。  相似文献   

6.
一种大气压放电氦等离子体射流的实验研究   总被引:6,自引:0,他引:6       下载免费PDF全文
江南  曹则贤 《物理学报》2010,59(5):3324-3330
大气压介质阻挡放电(DBD)等离子体射流获得了广泛的应用.但是到目前为止,人们对其形成机理仍不甚清楚.为此,本文对其进行了一系列的实验研究.与其他采用高速CCD进行的研究不同,本文研究的主要手段是两个带有狭缝的光电倍增管,数码相机和电学测量.虽然这些实验条件相对比较简陋,但是本文仍然根据这些实验结果探讨了等离子体射流的形成机理,传输特性,以及影响等离子体射流长度的实验参数,并发现了“电荷溢流”现象. 关键词: 介质阻挡放电 电晕放电 大气压等离子体射流 电荷溢流  相似文献   

7.
8.
常压射流等离子体发射光谱研究   总被引:2,自引:0,他引:2  
使用改进介质阻挡放电装置生成常压射流等离子体,采用光纤光栅光谱仪在300~1 000 nm范围记录了不同放电电压的氩气发射光谱,并比较了空气和氩气常压介质阻挡放电等离子体发射光谱,分析发现氩气发射光谱中的谱线都是氩原子的发射谱线,表明常压射流装置产生的等离子体全部为氩等离子体,而无其他空气成分参与放电。为测量电子激发温度,选用相距较近的763.51和772.42 nm两条光谱线对电子温度进行分析,结果表明电子激发温度的范围在0.1~0.3 eV,而且它还随着放电电压的增加而增加。初步使用“红外测温仪”测量被处理材料表面温度,结果发现材料表面的温度也随着放电电压的增加而增加,范围在50~100 ℃,材料表面温度的变化趋势可以近似表征等离子体宏观温度变化趋势。通过分析常压射流等离子体的温度特性,探讨了常压射流等离子体温度对材料改性研究的意义。  相似文献   

9.
使用介质阻挡放电光谱诊断装置,对常压介质阻挡放电在材料改性过程中的等离子体发射光谱进行测量,记录和比较了空气、氦气和氩气常压介质阻挡放电等离子体发射光谱,并运用氩元素谱线的相对强度来诊断电子温度等物理参量,以达到对材料表面改性过程的实时监控。工作的结果对常压介质阻挡放电及其在材料改性上的应用具有重要的意义  相似文献   

10.
使用水电极介质阻挡放电装置,分别在大气压空气和氦气中实现了稳定的高气压放电。通过水电极观察两种气体的放电,发现大气压空气中放电为空间随机分布的微放电丝,等离子体是不均匀的,而在氦气中放电没有微放电丝,空间分布比较均匀。比较而言,这种均匀放电产生的等离子体具有更广泛的工业应用前景。对两种气体中放电的电流波形进行了比较,发现空气中放电的电流脉冲在时间上是随机出现的而氦气中放电的电流脉冲在时间上具有周期性,并且空气中放电脉冲宽度约为几十ns而氦气中放电的电流持续时间较长,脉冲宽度大约为1μs。文章还对两种气体中介质阻挡放电发射光谱进行了研究,结果表明大气压氦气中均匀放电的N+2(B2Σ+uX2Σ+g)谱线391.4nm很强而在大气压空气放电中此光谱线很弱。这些研究结果对高气压条件下均匀放电的实现和大气压辉光放电的工业应用具有重要意义。  相似文献   

11.
利用针-板介质阻挡放电装置,在4 mm长的气隙中产生了大气压氩气射流等离子体。利用电学方法实现了对放电电流和电荷量的同时测量,并且对放电脉冲数和放电功率进行了研究;利用发射光谱法对放电等离子体进行了空间分辨测量,并根据ArⅠ696.54 nm的Stark展宽计算了等离子体的电子密度。结果发现:随着外加电压的增加,每个周期内的放电脉冲数增加,放电功率也增加。随着针头距离的增加,电子密度由2.94×1015cm-3逐渐减小到2.28×1015cm-3。实验结果表明:电场强度对放电脉冲数和电子密度的空间分布起重要作用。  相似文献   

12.
利用同轴介质阻挡放电喷枪,通过氩气的流动在大气压空气中产生了均匀的等离子体羽。等离子体羽沿气流方向较为均匀,但在喷嘴处为白色且亮度较高,远离喷嘴处为蓝色,亮度较低。研究了等离子体羽长度与外加电压幅值、驱动频率和气体流速的关系,气流小于4 L·min-1时等离子羽的长度随气流的增大而增大,而当气流大于4 L·min-1时长度随气流的增大而减小。当气流保持恒定时,等离子体羽的长度随外加电压幅值或驱动频率的增大而增大。结合气体放电理论以及分析湍流和平流对放电的影响,对等离子体羽长度随实验参数的变化进行了定性解释。光学方法研究发现在外加电压正半周期等离子羽有一个发光脉冲,而负半周期没有发光信号。同轴介质阻挡放电正半周期有两个发光脉冲,负半周期有一个发光脉冲。通过对该N2现象的分析,为等离子体羽的产生机制提供了一种可能的解释。采集了同轴介质阻挡放电和等离子体羽的发射光谱,研究发现除等离子体羽存在明显的OH和N2的发射谱线外,其发射光谱没有明显差别。利用光学发射谱N+2第一负带系,对等离子体羽转动温度进行了测量,发现转动温度沿远离喷嘴的方向逐渐降低,且转动温度随电压幅值的增大而增大。  相似文献   

13.
Capacitively coupled radio-frequency (13.56 MHz) glow discharge in argon at low pressure (200 mTorr) has been studied by optical emission spectroscopy (OES) and electrical probe. Increasing power density resulted in lowering of the electron temperature T e and increase of the electron density n e. The to transition in this case takes place smoothly. The intensity (I 750.4) of the emission line at 750.4 nm due to 2p11s2 transition closely follows the variation of n e with power density. Calculation of the electron-energy probability function shows that electron occupation mainly changes in the high-energy tail, which explains close resemblance of I 750.4 to n e. At moderate pressures, only OES method was applied to observe - transition which is abrupt in this pressure range.  相似文献   

14.
利用可调谐二极管激光吸收光谱技术对低气压氩气介质阻挡放电等离子体进行诊断,重点考察了Ar亚稳态1s5和1s3的数密度和气体温度随放电电压,气压,流量,极板间距,以及随N2配比的变化情况。实验基于朗伯-比尔(Lambert-Beer)定律,通过计算吸收谱线的吸收峰面积求取Ar亚稳态的数密度,同时对谱线进行Voigt拟合得到多普勒展宽,进而求出气体温度。Ar亚稳态主要由电子碰撞产生,但同时电子也会碰撞亚稳态发生猝灭作用,从而使数密度减少;气体温度则与等离子体的实际功率、电子的状态以及粒子之间的碰撞有关。实验结果表明在本实验条件范围内,Ar亚稳态数密度和气体温度随放电电压和流量的增大都先增大,之后逐渐趋于平缓,但两者随流量的变化幅度都较之随放电电压的小,增长较缓慢。随气压的升高,Ar亚稳态数密度和气体温度先增加并达到一个极大值,而之后逐渐降低。实验数据表明,气压对谱线展宽有较明显的影响作用。适当增大极板间距,Ar亚稳态数密度明显降低,但气体温度却有所升高。N2的加入对亚稳态有很强的猝灭作用,0.5%的N2就会使数密度下降50%,但随着N2浓度的进一步增大,其数密度不再明显降低。  相似文献   

15.
介质势垒放电(DBD)等离子体中NO荧光发射谱研究   总被引:2,自引:1,他引:1  
利用介质阻挡放电 (DBD)等离子体技术对大气污染物NO分子进行了光谱研究 ,得到了低气压条件下放电等离子体在 2 1 0~ 2 80nm光谱范围内的荧光发射谱。该谱明显的表现为双峰结构 ,谱线均成对出现 ,强度分布符合Frank Condon原理 ,且最大峰值位置出现在 2 36nm处 ,将该组谱线归属为NO分子的A2 ΣA →X2 Π1 / 2 ,2 / 3 跃迁。荧光产生过程为 :基态NO分子与高能电子发生非弹性碰撞被激发至激发态A2 Σ 后自发跃迁回基态同时辐射出荧光。通过测量等离子体中NO分子和N2 分子 337nm谱线强度随时间的变化关系 ,初步证实了放电等离子体中存在的NO分子的分解机制为 :e NO→N O e,N NO→N2 O ,O NO→NO2 hν。  相似文献   

16.
氩气介质阻挡放电的发光特性   总被引:1,自引:0,他引:1  
本文使用水电极介质阻挡放电装置,采用光学方法测量了氩气介质阻挡放电的发光特性。发现在驱动电压处于一定的范围内时,放电处于丝极模式,在驱动电压的每半周期内,无论是放电的总光还是单个微通道的放电发光均只有一次脉冲,单个微放电的时间为2μs,而总放电时间为2.4μs,这表明在氩气的丝极模式中,各单丝产生与熄灭的时间极其接近,各个放电丝之间有着很好的时间相关性。最后将本文的结果与空气中介质阻挡放电丝极模式的发光特性相比较,空气放电在每半周内的总光信号由多个脉冲组成,而每一个脉冲对应多个放电丝,因而氩气中各个放电微通道之间的时间相关性远强于空气的情况。  相似文献   

17.
采用发射光谱方法对大气压氩气介质阻挡放电(DBD)系统中的电子密度进行了诊断。通过考虑放电等离子体中的各种加宽机制, 采用自编的非对称卷积程序对氩原子发射谱线的线型进行分析拟合, 再通过反卷积的方法将各种加宽机制分离开来, 最终将Stark展宽分离出来进行大气压氩气介质阻挡放电电子密度的计算。诊断结果表明, 在大气压氩气介质阻挡放电中当有三个放电丝存在, 电子温度为10000 K时, 电子密度约为4.06×1021 m-3, 诊断结果和模拟结果符合得很好。此方法不仅可以应用在大气压介质阻挡放电中, 还可以用于其他含有非氢气体的大气压等离子体电子密度的测量。  相似文献   

18.
用发射光谱法测量氮气直流辉光放电的转动温度   总被引:2,自引:2,他引:2  
本文报道了氮气气压分别为10和20Pa时,对直流辉光放电的发射光谱进行测量和分析的结果。选择的研究对象为N2放电中形成的N2^ B^2∑u^ →X^2∑g^ 跃迁的Δv=v′-v″=0谱带系中v′=0→v″=0谱带的R支。在阴极背面辉光区、阴极鞘层区、正柱区以及阳极辉光区中分别选择一点进行了转动分辨的发射光谱的测量。利用自己编写的光谱拟合程序,获得了相应的实验条件下N2^ 的转动温度,给出了转动温度随放电电压的变化趋势,其结果可以用直流放电的帕邢定律得到很好的解释。在10和20Pa气压下,放电的阴极鞘层区、正柱区、阳极辉光区中的转动温度都随放电电压呈现出了不同的变化趋势,甚至是完全相反的变化趋势。我们认为这是由于气压不同时,放电状态不同所致:气压为10Pa时的放电是正常辉光放电,而气压为时20Pa的放电为反常辉光放电。  相似文献   

19.
采用板-板式电极结构在大气压氮气中成功地获得了具有工业应用前景的大面积均匀介质阻挡放电等离子体。利用发射光谱技术测量了N2(C3ΠuB3Πg)和N2+(B2Σ+uX2Σ+g 0-0 391.4 nm)的发射光谱,并研究了应用电压和驱动频率对N2(C3ΠuB3Πg)和N2+(B2Σ+uX2Σ+g 0-0 391.4 nm)发射光谱强度的影响。结果表明,当应用电压小于6 kV时,N2(C3ΠuB3Πg)和N2+(B2Σ+uX2Σ+ g0-0 391.4 nm)的发射光谱强度随应用电压增大变化较小,进一步升高应用电压时,等离子体发射光谱强度陡然增强。本文还讨论了激发态N+2(B2Σ+u)离子在纯N2和He+N2混合气体中介质阻挡大气压均匀介质阻挡放电下的主要产生机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号