首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultraviolet radiation can inhibit immune responses locally as well as systemically. Such effects have been measured in animals and humans exposed to ultraviolet B (wavelength 280-315 nm) (UVB) and ultraviolet A (315-400 nm) (UVA). The precise wavelength dependence is important for the identification of possible molecular targets and for assessments of risk of different artificial UV sources and solar UV. In such analyses, it is commonly assumed that radiation energy from each wavelength contributes to the effect independent of the other wavelengths. Here we show that this assumption does not hold good. In the present study, it was investigated whether exposure to broadband UVA or longwave ultraviolet A 1 (340-400 nm) (UVA 1) prior to the standard immunosuppressive UVB protocol might modulate the immunosuppressive effects induced by UVB. Preexposure to broadband UVA or longwave UVA 1, 1 day prior to the standard immunosuppressive UVB protocol, inhibited the UVB-induced suppression of delayed type hypersensitivity (DTH) to Listeria monocytogenes significantly. This effect was not associated with restoring the number of interleukin (IL-12)-positive cells in the spleen. Since isomerization of trans-urocanic acid (UCA) into the immunosuppressive cis-UCA isomer plays a crucial role in UVB-induced immunomodulation, in a second set of experiments it was investigated whether immunosuppression induced by cis-UCA might also be downregulated by preexposure to UVA. Animals were exposed to broad-band UVA or longwave UVA 1 prior to application of an immunosuppressive dose of cis- or trans-UCA as a control. Both UVA and UVA 1 appear to inhibit the cis-UCA-induced systemic immunosuppression (DTH and IL-12) to L. monocytogenes. These studies clearly show that UVA radiation modulates both UVB and cis-UCA-induced immunomodulation. In general, our studies indicate that both broadband UVA and longwave UVA 1 could induce modulation of UVB and cis-UCA-induced immunomodulation. As sunlight contains both UVA and UVB radiation the balance between these two radiations apparently determines the net immunomodulatory effect.  相似文献   

2.
In studies involving mice in which doses of UVA (320-400 nm) and UVB (290-320 nm) radiation were administered alone or combined sequentially, we observed a protective effect of UVA against UVB-induced erythema/edema and systemic suppression of contact hypersensitivity. The UVA immunoprotection was mediated by the induction of the stress enzyme heme oxygenase-1 (HO-1) in the skin, protection of the cutaneous Th1 cytokines interferon-gamma (IFN-gamma) and IL-12 and inhibition of the UVB-induced expression of the Th2 cytokine IL-10. In this study, we seek evidence for an immunological waveband interaction when UVA and UVB are administered concurrently to hairless mice as occurs during sunlight exposure in humans. A series of spectra providing varying ratios of UVA/UVB were developed, with the UVA ratio increased to approximately 3.5 times the UVA component in solar simulated UV (SSUV). We report that progressively increasing the UVA component of the radiation while maintaining a constant UVB dose resulted in a reduction of both the erythema/edema reaction and the degree of systemic immunosuppression, as measured as contact hypersensitivity. The UVA-enhanced immunoprotection was abrogated in mice treated with a specific HO enzyme inhibitor. UVA-enhanced radiation also upregulated the expression of cutaneous IFN-gamma and IL-12 and inhibited expression of both IL-6 and IL-10, compared with the activity of SSUV. The results were consistent with the previously characterized mechanisms of photoprotection by the UVA waveband alone and suggest that the UVA component of solar UV may have beneficial properties for humans.  相似文献   

3.
Abstract— It has previously been demonstrated that chronic low-dose solar-simulated UV radiation could induce both local and systemic immunosuppression as well as tolerance to a topically applied hapten. In this study, we have used a chronic low-dose UV-irradiation protocol to investigate the effects of UVA on the skin immune system of C3H/HeJ mice. Irradiation with UVA+B significantly suppressed the local and systemic primary contact hypersensitivity (CHS) response to the hapten 2,4,6-trinitrochlo-robenzene. Furthermore UVA+B reduced Langerhans cell (LC) and dendritic epidermal T cell (DETC) densities in chronically UV-irradiated mice. Ultraviolet A irradiation induced local, but not systemic, immunosuppression and reduced LC (32%) but not DETC from the epidermis compared to the shaved control animals. Treatment of mice with both UVA+B and UVA radiation also induced an impaired secondary CHS response, and this tolerance was transferable with spleen cells. These results suggest that depletion of LC, but not DETC, may be involved in UVA-induced local immunosuppression in our model, and that tolerance was induced in the presence of normal numbers of DETC. Hence exposure of C3H/HeJ mice 5 days per week for 4 weeks with UVA can induce local immunosuppression and tolerance.  相似文献   

4.
Ultraviolet (UV) radiation, including both UVB and UVA irradiation, is the major risk factor for causing skin cancer including melanoma. Recently, we have shown that Sesn2, a member of the evolutionarily conserved stress‐inducible protein family Sestrins (Sesn), is upregulated in human melanomas as compared to melanocytes in normal human skin, suggesting an oncogenic role of Sesn2. However, the role of Sesn2 in UVB and UVA response is unknown. Here, we demonstrated that both UVB and UVA induce Sesn2 upregulation in melanocytes and melanoma cells. UVB induces Sesn2 expression through the p53 and AKT3 pathways. Sesn2 negatively regulates UVB‐induced DNA damage repair. In comparison, UVA induces Sesn2 upregulation through mitochondria but not Nrf2. Sesn2 ablation increased UVA‐induced Nrf2 induction and inhibits UVA‐induced ROS production, indicating that Sesn2 acts as an upstream regulator of Nrf2. These findings suggest previously unrecognized mechanisms in melanocyte response to UVB and UVA irradiation and potentially in melanoma formation.  相似文献   

5.
6.
7.
Abstract— Ultraviolet A (UVA,315–400 nm) radiation is known to be a complete carcinogen, but in contrast to UVB (280-315 nm) radiation, much of the cell damage is oxygen dependent (mediated through reactive oxygen species), and the dominant premutational DNA lesion(s) remains to be identified. To investigate further the basic differences in UVA and UVB carcinogenesis, we compared in vivo cellular responses, viz. cell cycle progression and transient p53 expression in the epidermis, after UVA1 (340-400 nm) exposure with those after broadband UVB exposure of hairless mice. Using flow cytometry we found a temporary suppression of bromodeoxyuridine (BrdU) uptake in S-phase cells both after UVB and UVA1 irradiation, which only in the case of UVB is followed by an increase to well over control levels. With equally erythemogenic doses (1-2 MED), the modulation of BrdU uptake was more profound after UVB than after UVA1 irradiation. Also, a marked transient increase in the percentage of S-phase cells occurred both after UVB and after UVA1 irradiation, but this increase evolved more rapidly after UVA1 irradiation. Further, p53 expression increased both after UVB and UVA1 irradiations, with peak expression already occurring from 12 to 24 h after UVA1 exposure and around 24 h after UVB exposure. Overall, UVA1 radiation appears to have less of an impact on the cell cycle than UVB radiation, as measured by the magnitude and duration of changes in DNA synthesis and cells in S phase. These differences are likely to reflect basic differences between UVB and UVA1 in genotoxicity and carcinogenic action.  相似文献   

8.
The potential to induce non-nuclear changes in mammalian cells has been examined for (1) UVA1 radiation (340–400 nm, UVASUN 2000 lamp), (2) UVA + UVB (peak at 313 nm) radiation (FS20 lamp), and (3) UVC (254 nm) radiation (GI5T8 lamp). The effects of irradiation were monitored in vitro using three strains of L5178Y (LY) mouse lymphoma cells that markedly differ in sensitivity to UV radiation. Comparisons were made for the effects of approximately equitoxic fluences that reduced cell survival to 1–15%. Depending on the cell strain, the fluences ranged from 830 to 1600 kJ/m2 for the UVASUN lamp, 75 to 390 J/m2 for the FS20 lamp and 3.8 to 17.2 J/m2 for the G15T8 lamp. At the exposure level used in this study, irradiation with the UVASUN, but not the FS20 or G15T8, lamp induced a variety of non-nuclear changes including damage to cytoplasmic organelles and increased plasma membrane permeability and cell lysis. Cell lysis and membrane permeabilization were induced by the UVA1 emission of the UVASUN lamp, but not by its visible + IR components (>400 nm). The results show that the plasma membrane and other organelles of LY cells are highly sensitive to UVA1 but not to UVB or UVC radiation. Also UVA1, but not UVB or UVC radiation, causes rapid and extensive lysis of LY cells. In conclusion, non-nuclear damage contributes substantially to UVA cytotoxicity in all three strains of LY cells.  相似文献   

9.
Ultraviolet radiation within three different wavelength ranges, UVA (340-400 nm), UVB (290-320 nm) or UVC (200-290 nm), was shown to induce apoptosis in OCP13 cells, derived from the medaka fish. Morphological changes such as cell shrinkage and a decrease in the number of nucleoli appeared 4 h after UVA, UVB or UVC irradiation, although with different relative efficiencies. Doses required to induce apoptosis with similar efficiencies were about 2500-fold higher for UVA and 10-fold higher for UVB than for UVC. The following phenomena occurred after UVA irradiation but not after UVB or UVC irradiation. (1) Ultraviolet-A-induced cell detachment occurred with or without cycloheximide pretreatment. (2) Cells attached to plastic showed morphological changes such as rounding up of nuclei without a change in the cell distribution. (3) Morphological changes after UVA irradiation could not be evaded by photorepair treatment. (4) Morphological changes did not occur in cells attached to glass coverslips but only those in plastic dishes. (5) Apoptosis occurred without detectable increase of caspase-3-like activity. (6) Morphological changes were inhibited by N-acetylcysteine, a scavenger of active oxygen species. These results suggest the existence of two different pathways leading to apoptosis, one for long- (UVA) and the other for short- (UVB or UVC) wavelength radiation.  相似文献   

10.
Ultraviolet (UV) radiation, in particular the midwavelength range (UVB; 290-320 nm), is one of the most significant risk factors for the development of nonmelanoma skin cancer. UVB radiation-induced immunosuppression, which occurs in both humans and laboratory animals, contributes to their pathogenesis. However, there are conflicting reports on the relative role of CD4(+) and CD8(+) T cells in UVB induced skin cancer. The purpose of this study was to delineate the contribution of these two cell subpopulations to UVB induced immunosuppression and tumor development using C3H/HeN (WT), CD4 knockout (CD4(-/-) ) and CD8 knockout (CD8(-/-) ) mice. We observed that UVB induced skin carcinogenesis was retarded in terms of number of tumors per group, tumor volume and percentage of mice with tumors, in mice deficient in CD4(+) T cells compared with wild-type mice, whereas significantly greater (P < 0.05) numbers of tumors occurred in CD8(-/-) mice. These results indicate that, CD4(+) T cells promote tumor development while CD8(+) T cells have the opposite effect. Further, we found that CD4(+) T cells from tumor-bearing mice produced interleukin (IL)-4, IL-10, and IL-17 whereas CD8(+) T cells produced interferon-γ. Manipulation of T-cell subpopulations that are induced by UVB radiation could be a means of preventing skin cancers caused by this agent.  相似文献   

11.
Ultraviolet A (UVA) plays a vital role in the pathogenesis of premature skin aging through keratinocyte cytotoxicity and degradation of collagen, a main component of the extracellular matrix providing structural support. Oxidative stress caused by UVA irradiation can mediate induction of matrix metalloprotease-1 (MMP-1), a major enzyme responsible for collagen damage. Protection against UV-mediated disturbance of antioxidant defense system has been proposed as a possible mechanism by which botanical compounds slow down skin aging process. This study therefore aimed to assess inhibitory effects of caffeic acid (CA) and ferulic acid (FA), powerful plant-based phenolic antioxidants, on UVA-induced cytotoxicity and MMP-1 activity and mRNA level through modulation of antioxidant defense mechanism in immortalized human keratinocyte (HaCaT) cells. Pretreatment of the cells with CA or FA prior to UVA irradiation inhibited cytotoxicity, induction of MMP-1 activity and mRNA and oxidant formation. Moreover, CA and FA were able to up-regulate glutathione (GSH) content, γ-glutamate cysteine ligase (γ-GCL) mRNA as well as activities and mRNA expression of catalase and glutathione peroxidase (GPx) in irradiated cells. In conclusion, CA and FA provided protective effects on UVA-mediated MMP-1 induction in HaCaT cells possibly through restoration of antioxidant defense system at the cellular and molecular level.  相似文献   

12.
House dust mites (HDM) are critical factors in airway inflammation. They activate respiratory epithelial cells to produce reactive oxygen species (ROS) and activate Toll-like receptor 4 (TLR4). ROS induce the expression of inflammatory cytokines in respiratory epithelial cells. Lycopene is a potent antioxidant nutrient with anti-inflammatory activity. The present study aimed to investigate whether HDM induce intracellular and mitochondrial ROS production, TLR4 activation, and pro-inflammatory cytokine expression (IL-6 and IL-8) in respiratory epithelial A549 cells. Additionally, we examined whether lycopene inhibits HDM-induced alterations in A549 cells. The treatment of A549 cells with HDM activated TLR4, induced the expression of IL-6 and IL-8, and increased intracellular and mitochondrial ROS levels. TAK242, a TLR4 inhibitor, suppressed both HDM-induced ROS production and cytokine expression. Furthermore, lycopene inhibited the HDM-induced TLR4 activation and cytokine expression, along with reducing the intracellular and mitochondrial ROS levels in HDM-treated cells. These results collectively indicated that the HDM induced TLR4 activation and increased intracellular and mitochondrial ROS levels, thus resulting in the induction of cytokine expression in respiratory epithelial cells. The antioxidant lycopene could inhibit HDM-induced cytokine expression, possibly by suppressing TLR4 activation and reducing the intracellular and mitochondrial ROS levels in respiratory epithelial cells.  相似文献   

13.
14.
Photodynamic therapy (PDT) of cancer induces oxidative stress, which intervenes in the expression of cytokines by tumor cells. The cytokines might have either a positive or a negative impact on tumor eradication. Here, we studied the expression of cytokines vascular endothelial growth factor (VEGF) and interleukin-1alpha (IL-1alpha) in the human epidermoid carcinoma A-431 cells following m-tetra(3-hydroxyphenyl)-chlorin (mTHPC)-mediated PDT in vitro and assessed the IL-1alpha effect on VEGF expression. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay revealed the enhanced production of VEGF and IL-1alpha both on mRNA and protein levels by mTHPC-loaded cells after light exposure. The silencing of IL1A by small interfering RNA resulted in decreased production of IL-1alpha and a reduced amount of VEGF. Furthermore, exogenous recombinant IL-1alpha stimulated the VEGF expression after PDT. Thus, in addition to the cytotoxic action on the A-431 cells, mTHPC-mediated PDT stimulated the production of VEGF and IL-1alpha, and IL-1alpha contributed to the VEGF overexpression. These data establish IL-1alpha as a possible target of combined cancer treatment.  相似文献   

15.
16.
The proinflammatory cytokine interleukin-20 (IL-20) may exert the majority of its activity in the skin. We examined the effect of various treatments including several forms of phototherapy on IL-20 expression using cultured normal human epithelial keratinocytes (NHEK). Broadband UVB light, recombinant (r) IL-1 and rIL-8 increased, while hydrocortisone reduced, NHEK supernatant IL-20 levels. Elevation of NHEK IL-20 mRNA and maximal supernatant IL-20 levels occurred with a UVB light dose (40 mJ cm(-2)) that reduced cell viability by approximately 50%. While this UVB light dose also elevated supernatant IL-1 alpha and IL-8 levels, antibody neutralization studies indicated that neither of these cytokines was directly responsible for this increase in IL-20 expression. However, the elevation in IL-20 levels was fully inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor SB-203580, suggesting involvement of this stress signaling pathway in this UVB light response. Photodynamic therapy (PDT) with the photosensitizer lemuteporfin, UVA light, cisplatin, lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha) or recombinant interferon-gamma (rIFN-gamma) either had little effect or decreased NHEK supernatant IL-20 levels. Reduced IL-20 levels paralleled the cytotoxic actions of PDT, UVA light or cisplatin and the antiproliferative effect of rIFN-gamma. Neither rIL-20 supplementation nor anti-IL-20 antibody treatments affected cell viability indicating that soluble IL-20 did not affect the short-term survival of UVB light-irradiated NHEK. Stimulation of IL-20 expression in keratinocytes by UVB light suggests that this cytokine might participate in skin responses to this ever-present environmental factor and potentially has a role in UV light-associated dermatoses.  相似文献   

17.
Ultraviolet‐A light (UVA)‐induced DNA damage and repair in red blood cells to investigate the sensitivity of African catfish to UVA exposure is reported. Fishes were irradiated with various doses of UVA light (15, 30, and 60 min day−1 for 3 days). Morphological and nuclear abnormalities in red blood cells were observed in the fish exposed to UVA compared with controls. Morphological alterations such as acanthocytes, crenated cells, swollen cells, teardrop‐like cells, hemolyzed cells, and sickle cells were observed. Those alterations were increased after 24 h exposure to UVA light and decreased at 14 days after exposure. The percentage of apoptosis was higher in red blood cells exposed to higher doses of UVA light. No micronuclei were detected, but small nuclear abnormalities such as deformed and eccentric nuclei were observed in some groups. We concluded that exposure to UVA light induced DNA damage, apoptosis, and morphological alterations in red blood cells in catfish; however, catfish were found to be less sensitive to UVA light than wild‐type medaka.  相似文献   

18.
Ultraviolet (UV) eye irradiation denatures the cells of the intestine. This study examined the action of UVA and UVB on dextran sodium sulfate (DSS)‐induced ulcerative colitis. We produced a mouse model of ulcerative colitis by administering DSS for 5 days and irradiated the eye with UVB or UVA for each day of the DSS treatment period. DSS‐induced ulcerative colitis was deteriorated by the UVB eye irradiation. Conversely, the symptoms improved with UVA eye irradiation. The levels of adrenocorticotropic hormone (ACTH), corticotropin‐releasing hormone (CRH), urocortin 2, interleukin (IL)‐18, IL‐6 and histamine in the blood increased after the UVB eye irradiation of DSS‐treated mice (UVB/DSS‐treated mice). In contrast, the β‐endorphin level in the blood of the UVA/DSS‐treated mice increased and the levels of urocortin 2, tumor necrosis factor (TNF)‐α and histamine decreased. Furthermore, in the colon, the expression of melanocortin‐2 receptors (MC2R) increased in the UVB/DSS‐treated mice, while the expression of μ‐opioid receptors increased in the UVA/DSS‐treated mice. When an ACTH inhibitor was administered, UVB eye irradiation caused the deterioration of DSS‐treated ulcerative colitis, while the effect of UV eye irradiation disappeared with a μ‐opioid receptor antagonist. These results suggested that UV eye irradiation plays an important role in DSS‐induced ulcerative colitis.  相似文献   

19.
Ultraviolet (UV) radiation from sunlight causes skin cancer and inhibits priming of the immune system during vaccination. However the dose related effects of the different components of sunlight (UVA and UVB) are complex and require further investigation. Using ovalbumin as a model protein vaccine with saponin as adjuvant we show that both UVA and UVB can suppress the DTH response to a poorly immunogenic protein. Increasing doses of UVB induced increased levels of immunosuppression and tolerance. UVA however, caused a bi-phasic dose response with intermediate but not low or high doses causing primary immunosuppression. No dose of UVA caused significant tolerance. Similar results were observed in both C57BL/6 and Balb/c mice. Our data confirms the complex immunomodulatory dose effects of UVA and UVB for a protein antigen, and shows that both UVB and UVA can suppress immunity induced by a protein with adjuvant. This highlights the importance of considering sun exposure patterns in the future success of both preventing skin cancer development and enhancing vaccination regimes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号