首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is devoted to a comparison of various iterative solvers for the Stokes problem, based on the preconditioned Uzawa approach. In the first section the basic equations and general results of gradient-like methods are recalled. Then a new class of preconditioners, whose optimality will be shown, is introduced. In the last section numerical experiments and comparisons with multigrid methods prove the quality of these schemes, whose discretization is detailed.  相似文献   

2.
We present and analyse a new mixed finite element method for the generalized Stokes problem. The approach, which is a natural extension of a previous procedure applied to quasi‐Newtonian Stokes flows, is based on the introduction of the flux and the tensor gradient of the velocity as further unknowns. This yields a two‐fold saddle point operator equation as the resulting variational formulation. Then, applying a slight generalization of the well known Babu?ka–Brezzi theory, we prove that the continuous and discrete formulations are well posed, and derive the associated a priori error analysis. In particular, the finite element subspaces providing stability coincide with those employed for the usual Stokes flows except for one of them that needs to be suitably enriched. We also develop an a posteriori error estimate (based on local problems) and propose the associated adaptive algorithm to compute the finite element solutions. Several numerical results illustrate the performance of the method and its capability to localize boundary layers, inner layers, and singularities. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
This paper discusses the influence of the stabilization parameter on the convergence factor of various iterative methods for the solution of the Stokes problem discretized by the so-called locally stabilized Q1-P0 finite element. Our objective is to point out optimal parameters which ensure rapid convergence. The first part of the paper is concerned with the dual formulation of the problem. It gives the theoretical precision and practical developments of our stabilized context Uzawa-type algorithm. We assert that the convergence factor of such a method is majored independently of the mesh size by a function of the stabilization parameter. Moreover, we point out that there exists an optimal value of this parameter that minimizes this upper bound. This gives a theoretical justification of pre-existing numerical results. We show that the optimal parameter can be determined a priori. This is a key point when the method has to be implemented. Finally, we base an interpretation of the iterated penalty method numerical behaviour on some theoretical results about the minimum eigenvalue of the stabilized dual operator. This algorithm involves a penalty parameter and a stabilization parameter and we discuss a strategy for choosing optimal parameters. The mixed formulation of the problem is dealt with in the second part of the paper, which proposes several preconditioned conjugate-gradient-type methods. The indefinite character of the problem makes it intrinsically hard. However, if one chooses a suitable preconditioner, this difficulty is overcome, since the preconditioned operator becomes positive definite. We study the eigenvalue spectrum of the preconditioned operator and thereby the convergence factor of the algorithm. In contrast with the two previous formulations, we show that this convergence factor is majored independently of the stabilization parameter. More precisely, we point out convergence factors comparable with those obtained for Poisson-type problems. Finally, we present a variant of the latter method which uses our so-called macroblock-type preconditioner. A comparison with the simple case of diagonal preconditioning is addressed and the improved performance of the macroblock-type preconditioner is evidenced. Various 2D numerical experiments are given to corroborate the theories presented herein.  相似文献   

4.
A new system of generalized mixed implicit equilibrium problems(SGMIEP) involving nonmonotone set-valued mappings is introduced and studied in real reflexive Banach spaces.First,an auxiliary mixed equilibrium problem(AMEP) is introduced.The existence and the uniqueness of the solutions to the AMEP are proved under quite mild assumptions without any coercive conditions.Next,by using the solution mapping of the AMEP,a system of generalized equation problems(SGEP) is considered,and its equivalence with the SGMIEP is shown.By using the SGEP,a new iterative algorithm for solving the SGMIEP is proposed and analyzed.The strong convergence of the iterative sequences generated by the algorithm is proved under suitable conditions.These results are new,which unify and generalize some recent results in this field.  相似文献   

5.
The Q2P1 approximation is one of the most popular Stokes elements. Two possible choices are given for the definition of the pressure space: one can either use a global pressure approximation (that is on each quadrilateral the finite element space is spanned by 1 and by the global co‐ordinates x and y) or a local approach (consisting in generating the local space by means of the constants and the local curvilinear co‐ordinates on each quadrilateral ξ and η). The former choice is known to provide optimal error estimates on general meshes. This has been shown, as it is standard, by proving a discrete inf–sup condition. In the present paper we check that the latter approach satisfies the inf–sup condition as well. However, recent results on quadrilateral finite elements bring to light a lack in the approximation properties for the space coming out from the local pressure approach. Numerical results actually show that the second choice (local or mapped pressure approximation) is suboptimally convergent. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
We consider numerical solution of finite element discretizations of the Stokes problem. We focus on the transform-then-solve approach, which amounts to first apply a specific algebraic transformation to the linear system of equations arising from the discretization, and then solve the transformed system with an algebraic multigrid method. The approach has recently been applied to finite difference discretizations of the Stokes problem with constant viscosity, and has recommended itself as a robust and competitive solution method. In this work, we examine the extension of the approach to standard finite element discretizations of the Stokes problem, including problems with variable viscosity. The extension relies, on one hand, on the use of the successive over-relaxation method as a multigrid smoother for some finite element schemes. On the other hand, we present strategies that allow us to limit the complexity increase induced by the transformation. Numerical experiments show that for stationary problems our method is competitive compared to a reference solver based on a block diagonal preconditioner and MINRES, and suggest that the transform-then-solve approach is also more robust. In particular, for problems with variable viscosity, the transform-then-solve approach demonstrates significant speed-up with respect to the block diagonal preconditioner. The method is also particularly robust for time-dependent problems whatever the time step size.  相似文献   

7.
The generalized Navier– Stokes equations for incompressible viscous flows through isotropic granular porous medium are studied. Some analytical classic solutions of the Navier– Stokes equations are generalized to the case of the considered equations. Obtained solutions of generalized equations reduce to classic ones as porosity effect disappears. Average velocity of generalized solutions is calculated and evaluated in two limiting regimes of flow. In the shallow conduit, the generalized flow rate approximates the free (without porous medium) flow rate and in the case of removed boundaries this approaches Darcy's law. The use of the derived exact solutions for benchmarking purposes is described. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents the development of the three- dimensional prolonged adaptive finite element equation solver for the Navier–Stokes equations. The finite element used is the tetrahedron with quadratic approximation of the velocities and linear approximation of the pressure. The equation system is formulated in the basic variables. The grid is adapted to the solution by the element Reynolds number. An element in the grid is refined when the Reynolds number of the element exceeds a preset limit. The global Reynolds number in the investigation is increased by scaling the solution for a lower Reynolds number. The grid is refined according to the scaled solution and the prolonged solution for the lower Reynolds number constitutes the start vector for the higher Reynolds number. Since the Reynolds number is the ratio of convection to diffusion, the grid refinements act as linearization and symmetrization of the equation system. The linear equation system of the Newton formulation is solved by CGSTAB with coupled node fill-in preconditioner. The test problem considered is the three-dimensional driven cavity flow. © 1997 John Wiley & Sons, Ltd.  相似文献   

9.
A finite element technique is presented for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions. The finite element discretization is effected by Crouzeix–Raviart elements, the discontinuous pressure approximation of which is central to this approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic ‘energy’ reformulation of the desired output, the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the inter‐sub‐domain continuity conditions on velocity. Appealing to the dual max–min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine‐mesh discretization. The Lagrange multipliers are generated by exploiting an associated coarse‐mesh approximation. In addition to the requisite coarse‐mesh calculations, the bound technique requires the solution of only local sub‐domain Stokes problems on the fine mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flow rate past and the lift force on a body immersed in a channel. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
In this work a finite element method for a dual‐mixed approximation of generalized Stokes problems in two or three space dimensions is studied. A variational formulation of the generalized Stokes problems is accomplished through the introduction of the pseudostress and the trace‐free velocity gradient as unknowns, yielding a twofold saddle point problem. The method avoids the explicit computation of the pressure, which can be recovered through a simple post‐processing technique. Compared with an existing approach for the same problem, the method presented here reduces the global number of degrees of freedom by up to one‐third in two space dimensions. The method presented here also represents a connection between existing dual‐mixed and pseudostress methods for Stokes problems. Existence, uniqueness, and error results for the generalized Stokes problems are given, and numerical experiments that illustrate the theoretical results are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The iterative solution of linear systems arising from panel method discretization of three‐dimensional (3D) exterior potential problems coming mainly from aero‐hydrodynamic engineering problems, is discussed. An original preconditioning based on an approximate eigenspace decomposition is proposed, which corrects bad conditioning arising from a pair of surfaces that are very close to each other, which is a very common situation in slender wings and other aerodynamic profiles. This preconditioning has been tested with the standard Bi‐conjugate gradient (Bi‐CG) and conjugate gradient squared (CGS) iterative methods. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
An investigation is made of the performance of algebraic multigrid (AMG) solvers for the discrete Stokes problem. The saddle‐point formulations are based on the direct enforcement of the fundamental conservation laws in discrete spaces and subsequently stabilised with the aid of a regular splitting of the diffusion operator. AMG solvers based on an independent coarsening of the fields (the unknown approach) and also on a common coarsening (the point approach) are investigated. Both mixed‐order and equal‐order interpolations are considered. The dependence of convergence on the ‘degree of coarsening’ is investigated by studying the ‘convergence versus coarsening’ characteristics and their variation with mesh resolution. They show a consistency in shape, which reveals two distinct performance zones, one convergent the other divergent. The transition from the convergent to the divergent zones is discontinuous and occurs at a critical coarsening factor that is largely mesh independent. It signals a breakdown in the stability of the smoothing at the coarser levels of coarse grid approximation. It is shown that the previously observed, mesh‐dependent, scaling of convergence factors, which had suggested inconsistencies in the coarse grid approximation, is not a reliable marker of inconsistency. It is an indirect consequence of the breakdown in the stability of smoothing. For stable smoothing, reduction factors are shown to be largely mesh independent. The ability of mixed‐order interpolation to permit stable smoothing and therefore to deliver mesh‐independent convergence is explained. Two expedient options are suggested for obtaining mesh‐independent convergence for those AMG codes that are based on an equal‐order interpolation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Solution algorithms for solving the Navier–Stokes equations without storing equation matrices are developed. The algorithms operate on a nodal basis, where the finite element information is stored as the co-ordinates of the nodes and the nodes in each element. Temporary storage is needed, such as the search vectors, correction vectors and right hand side vectors in the conjugate gradient algorithms which are limited to one-dimensional vectors. The nodal solution algorithms consist of splitting the Navier–Stokes equations into equation systems which are solved sequencially. In the pressure split algorithm, the velocities are found from the diffusion–convection equation and the pressure is computed from these velocities. The computed velocities are then corrected with the pressure gradient. In the velocity–pressure split algorithm, a velocity approximation is first found from the diffusion equation. This velocity is corrected by solving the convection equation. The pressure is then found from these velocities. Finally, the velocities are corrected by the pressure gradient. The nodal algorithms are compared by solving the original Navier–Stokes equations. The pressure split and velocity–pressure split equation systems are solved using ILU preconditioned conjugate gradient methods where the equation matrices are stored, and by using diagonal preconditioned conjugate gradient methods without storing the equation matrices. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical instability is identified in Navier–Stokes discretizations on meshes of high anisotropy. The instability occurs under conditions of low Reynolds number (and in the Stokes limit) for collocated‐mesh discretizations based on physical (momentum) interpolation schemes. It is responsible for the poor performance reported for some algebraic multigrid solvers (previously attributed to possible deficiencies in the solvers). The problem may be alleviated by not employing uniformly anisotropic meshes. A graded stretching/compaction that leaves part of the domain spanned by elements of moderate aspect ratio can provide sufficient velocity–pressure coupling to stabilize the system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we investigate the relationship between stabilized and enriched finite element formulations for the Stokes problem. We also present a new stabilized mixed formulation for which the stability parameter is derived purely by the method of weighted residuals. This new formulation allows equal‐order interpolation for the velocity and pressure fields. Finally, we show by counterexample that a direct equivalence between subgrid‐based stabilized finite element methods and Galerkin methods enriched by bubble functions cannot be constructed for quadrilateral and hexahedral elements using standard bubble functions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Two‐level low‐order finite element approximations are considered for the inhomogeneous Stokes equations. The elements introduced are attractive because of their simplicity and computational efficiency. In this paper, the stability of a Q1(h)–Q1(2h) approximation is analysed for general geometries. Using the macroelement technique, we prove the stability condition for both two‐ and three‐dimensional problems. As a result, optimal rates of convergence are found for the velocity and pressure approximations. Numerical results for three test problems are presented. We observe that for the computed examples, the accuracy of the two‐level bilinear approximation is compared favourably with some standard finite elements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The advent of vector and massively parallel computers offers researchers the possibility of enormous gains in execution time for scientific and engineering programs. From the numerical point of view, such programs are frequently based on the inversion of sparse, diagonally banded matrices. Conventional scalar solvers often perform poorly on vector machines due to short effective vector lengths, and thus appropriate methods must be chosen for use with vector machines. In this paper a number of commonly used solvers are tested for the Navier–Stokes equations, in both scalar and vector form, on two vector architecture machines. A new method is presented which performs well in both vector and scalar form on a range of vector architectures.  相似文献   

18.
A domain decomposition method with Lagrange multipliers for the Stokes problem is developed and analysed. A common approach to solve the Stokes problem, termed the Uzawa algorithm, is to decouple the velocity and the pressure. This approach yields the Schur complement system for the pressure Lagrange multiplier which is solved with an iterative solver. Each outer iteration of the Uzawa procedure involves the inversion of a Laplacian in each spatial direction. The objective of this paper is to effectively solve this inner system (the vector Laplacian system) by applying the finite‐element tearing and interconnecting (FETI) method. Previously calculated search directions for the FETI solver are reused in subsequent outer Uzawa iterations. The advantage of the approach proposed in this paper is that pressure is continuous across the entire computational domain. Numerical tests are performed by solving the driven cavity problem. An analysis of the number of outer Uzawa iterations and inner FETI iterations is reported. Results show that the total number of inner iterations is almost numerically scalable since it grows asymptotically with the mesh size and the number of subdomains. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Solving efficiently the incompressible Navier–Stokes equations is a major challenge, especially in the three‐dimensional case. The approach investigated by Elman et al. (Finite Elements and Fast Iterative Solvers. Oxford University Press: Oxford, 2005) consists in applying a preconditioned GMRES method to the linearized problem at each iteration of a nonlinear scheme. The preconditioner is built as an approximation of an ideal block‐preconditioner that guarantees convergence in 2 or 3 iterations. In this paper, we investigate the numerical behavior for the three‐dimensional lid‐driven cavity problem with wedge elements; the ultimate motivation of this analysis is indeed the development of a preconditioned Krylov solver for stratified oceanic flows which can be efficiently tackled using such meshes. Numerical results for steady‐state solutions of both the Stokes and the Navier–Stokes problems are presented. Theoretical bounds on the spectrum and the rate of convergence appear to be in agreement with the numerical experiments. Sensitivity analysis on different aspects of the structure of the preconditioner and the block decomposition strategies are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a numerical study of the 3D flow around a cylinder which was defined as a benchmark problem for the steady state Navier–Stokes equations within the DFG high‐priority research program flow simulation with high‐performance computers by Schafer and Turek (Vol. 52, Vieweg: Braunschweig, 1996). The first part of the study is a comparison of several finite element discretizations with respect to the accuracy of the computed benchmark parameters. It turns out that boundary fitted higher order finite element methods are in general most accurate. Our numerical study improves the hitherto existing reference values for the benchmark parameters considerably. The second part of the study deals with efficient and robust solvers for the discrete saddle point problems. All considered solvers are based on coupled multigrid methods. The flexible GMRES method with a multiple discretization multigrid method proves to be the best solver. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号